首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apatite silicates have recently been reported as promising electrolyte materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). In this work, a series of apatite-type compounds La9.67Si6-xAlxO26.5-x/2 (LSAO) with x = 0-2 are synthesized by the sol-gel process at calcining temperature of 800-900 °C. Thermal expansion coefficient, relative density and electrical conductivity of these samples with different Al doped contents are investigated. A symmetrical cell, which is composed of La9.67Si5AlO26 electrolyte and (La0.74Bi0.10Sr0.16)MnO3+δ (LBSM) cathode, is fabricated and electrochemically characterized. LBSM cathode shows a good electrochemical performance, which proves LBSM to be a promising candidate cathode for LSAO-based electrolyte.  相似文献   

2.
Transport properties and non-stoichiometry of La1−xCaxW1/6O2 and La1−yW1/6O2 (x=0, 0.005, 0.05; y=0.05, 0.1) have been characterized by means of impedance spectroscopy, the EMF-technique, H+/D+ isotope exchange, and thermogravimetry in the temperature range 300-1200 °C as a function of oxygen partial pressure and water vapor partial pressure. The materials exhibit mixed ionic and electronic conductivities; n- and p-type electronic conduction predominate at high temperatures under reducing and oxidizing conditions, respectively. Protons are the major ionic charge carrier under wet conditions and predominates the conductivity below ∼750 °C. The maximum in proton conductivity is observed for LaW1/6O2 with values reaching 3×10−3 S/cm at approximately 800 °C. The high proton conductivity for the undoped material is explained by assuming interaction between water vapor and intrinsic (anti-Frenkel) oxygen vacancies.  相似文献   

3.
A series of iron- and/or aluminium-doped apatite-type lanthanum silicates (ATLS) La9.83Si6 ‐ x ‐ yAlxFeyO26 ± δ (x = 0, 0.25, 0.75, and 1.5, y = 0, 0.25, 0.75, and 1.5) were synthesized using the mechanochemical activation (MA), solid state reaction (SSR), Pechini (Pe) and sol-gel (SG) methods. The total conductivity of the prepared materials was measured under air in the temperature range 600-850 °C using 4-probe AC impedance spectroscopy. Its dependence on composition, synthesis method, sintering conditions and powder particle size was investigated. It was found that for electrolytes of the same composition, those prepared via mechanochemical activation exhibited the highest total specific conductivity, which was improved with increasing Al- and decreasing Fe-content. The highest conductivity value at 700 °C, equal to 2.04 × 10− 2 S cm− 1, was observed for the La9.83Si5Al0.75Fe0.25O26 ± δ electrolyte. La9.83Si4.5Fe1.5O26 ± δ electrolyte samples synthesized using the Pechini method exhibited higher conductivity when sintered conventionally than when spark-plasma sintering (SPS) was used.  相似文献   

4.
Hf1−xSixOy is an attractive candidate material for high-k dielectrics. We report in this work the deposition of ultra-thin Hf1−xSixOy films (0.1 ≤ x ≥ 0.6) on silicon substrate at 450 °C by UV-photo-induced chemical vapour deposition (UV-CVD) using 222 nm excimer lamps. Silicon(IV) and hafnium(IV) organic compounds were used as the precursors. Films from around 5 to 40 nm in thickness with refractive indices from 1.782 to 1.870 were grown. The deposition rate was found to be of 6 nm/min at a temperature of 450 °C. The physical, interfacial and electrical properties of hafnium silicate (Hf1−xSixOy) thin films were investigated by using X-ray photoelectron spectroscopy, ellipsometry, FT-IR, C-V and I-V measurements. XRD showed that they were basically amorphous, while Fourier transform infrared spectroscopy (FT-IR), clearly revealed Hf-O-Si absorption in the photo-CVD deposited Hf1−xSixOy films. Surface and interfacial properties were analysed by TEM and XPS. It is found that carbon content in the films deposited by UV-CVD is very low and it also decreases with increasing Si/(Si + Hf) ratio, as low as about 1 at.% at the Si/(Si + Hf) ratio of 60 at.%.  相似文献   

5.
Sintering temperature is used to control the microstructure of Li1 + x + yAlxTi2  xSiyP3  yO12 (x = 0.3, y = 0.2), a NASICON-type glass-ceramic. Scanning Electron Microscope imaging, X-Ray Diffraction, and Electrochemical Impedance Spectroscopy are employed to show that increase in sintering temperature increases conductivity while generating secondary crystalline phases. Total conductivity is as high as 3.81 × 10−4 S cm−1 for sintering temperatures above 1000 °C. Crystallization of dielectric phases places the optimal sintering temperature in the 900 °C to 1000 °C range. Thermal analysis of the glass precursor reveals the glass transition, and crystallization temperatures.  相似文献   

6.
The equilibrium p(O2)-T-δ diagrams of perovskite-type La1 − xSrxCoO3 − δ (x = 0.3-0.7), collected at 873-1223 K in the oxygen partial pressure range 10− 5-1 atm by coulometric titration and thermogravimetric analysis, were analyzed in order to appraise the effects of the point-defect interactions. The nonstoichiometry variations were adequately described combining the rigid-band approach for delocalized holes and the pair-cluster formation reaction involving oxygen vacancies and Co2+ cations, whilst coulombic repulsion between the positively charged vacancies can be neglected. The resultant relationships between the oxygen chemical potential and mobile vacancy concentration were used for numerical regression analysis of the steady-state oxygen permeation through dense La1 − xSrxCoO3 − δ membranes, affected by the surface exchange kinetics when Sr2+ content is higher than 40-50%. The calculated ionic conductivity is strongly influenced by the defect association processes, and decreases with decreasing concentration of the mobile vacancies as clustering starts to prevail on reduction. The Mössbauer spectroscopy studies of La1 − xSrxCoO3 − δ, doped with 1 mol% 57Fe isotope and moderately reduced at p(O2) ≈ 105 atm, show no long-range vacancy ordering at x ≤ 0.5.  相似文献   

7.
(Ca1 − x, Srx)Al2Si2O8:0.06Ce3+, M+ (M+ = Li+, Na+, K+) phosphors have been prepared by conventional solid-state reaction method. The structural and optical properties of the phosphors were characterized by X-ray diffraction (XRD) technique and spectrophotometer, respectively. A regular variation was found among the XRD patterns of (Ca1 − x, Srx)Al2Si2O8:0.06Ce3+ phosphors based on the changing of Sr content. With the increase of Sr content, the maximum of emission band presented slight blue shifts (~ 15 nm). The luminescence intensity of CaAl2Si2O8:0.06Ce3+ and SrAl2Si2O8:0.06Ce3+ were significantly enhanced when K+ and Li+ were incorporated, respectively.  相似文献   

8.
Lithium ion conducting solid-state composites consisting of lithium ion conducting ionic liquid, lithium bis(trifluoromethanesulfonyl)amide (Li-TFSA) dissolved 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)amide (EMI-TFSA), denoted by [yMLi+][EMI+][TFSA] in this study, and various oxide particles such as SiO2, Al2O3, TiO2 (anatase and rutile) and 3YSZ are synthesized via a liquid route for the molar concentration of lithium, y, to be 1. The composite consists of SiO2 and the ionic liquid with y = 0.2 was also prepared. The ionic liquid are quasi-solidified at the above oxide particle surfaces when x is below 40 for y = 1 and x is below 30 for y = 0.2, corresponding to the confinable thickness of the ionic liquid at the oxides' surfaces to be approximately 5-10 nm regardless of the oxide compositions. The electrical conductivities of x vol.%[yMLi+][EMI+][TFSA-]-SiO2, Al2O3, TiO2s or 3YSZ composites are evaluated by ac impedance measurements. The quasi-solid-state composites exhibited liquid-like high apparent conductivity, e.g. 10− 3.3-10− 2.0 S cm− 1 in the temperature range of 323-538 K for SiO2-ionic liquid composites with y = 1. The self-diffusion coefficients of the constituent species of x vol.% [yMLi+][EMI+][TFSA] (x is below 40, y = 0.2 and 1) − SiO2 are evaluated by the Pulse Gradient Spin Echo (PGSE)-NMR technique in the temperature range of 298-348 K. By the quasi-solidification of the ionic liquid at SiO2 particle surfaces, the absolute values of the diffusion coefficients of all constituent species decreased. The SiO2 surfaces work to promote ionization of ion pair, [EMI+][TFSA], while significant influence on the solvation coordination, [Li(TFSA)n + 1]n, was not observed. The apparent transport numbers of Li-containing species both in the bulk and the quasi-solidified ionic liquid showed similar values with each other, which was evaluated to be in the range of 0.010-0.017 for y = 0.2 and 0.051-0.093 for y = 1 in the abovementioned temperature range.  相似文献   

9.
In order to investigate the secondary cluster ion emission process of organo-metallic compounds under keV ion bombardment, self-assembled monolayers (SAMs) of alkanethiols on gold are ideal model systems. In this experimental study, we focussed on the influence of the primary ion species on the emission processes of gold-alkanethiolate cluster ions from a hexadecanethiol SAM on gold. For this purpose, we carried out time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements using the following primary ion species and acceleration voltages: Ar+, Xe+, SF5+ (10 kV), Bi+, Bi3+(25 kV), Bi32+, Bi52+, Bi72+ (25 kV).It is well known that molecular ions M and gold-alkanethiolate cluster ions AuxMy with M = S-(CH2)15-CH3, x − 3 ≤ y ≤ x + 1, x, y > 0, show intense peaks in negative mass spectra. We derived yields YSI exemplarily for the molecular ions M and the gold-hexadecanethiolate cluster ions Auy+1My up to y = 8 and found an exponentially decreasing behaviour for increasing y-values for the cluster ions.In contrast to the well-known increase in secondary ion yield for molecular secondary ions when moving from lighter to heavier (e.g. Ar+ to Xe+) or from monoatomic to polyatomic (e.g. Xe+ to SF5+) primary ions, we find a distinctly different behaviour for the secondary cluster ions. For polyatomic primary ions, there is a decrease in secondary ion yield for the gold-hexadecanethiolate clusters whereas the relative decrease of the secondary ion yield ξY with increasing y remains almost constant for all investigated primary ions.  相似文献   

10.
The samples Ni1+xyZnyTix Fe2−2xO4; y=0.1, 0.0≤x≤0.5 were prepared in a single-phase spinel structure as indicated from X-ray analysis. Electrical conductivity and dielectric measurements at different temperatures from 300 K to 600 K in the frequency range from 42 Hz to 5 MHz have been analyzed. The relation of conductivity with temperature revealed a semiconductor to semimetallic behavior as Ti4+ concentration increases. The conduction mechanism depends mainly on the valence exchange between the different metal ions in the same site or in different sites. The dielectric constant as a function of temperature and frequency showed that there is a strong dependence on the compositional parameter x. The electrical modulus has been employed to study the relaxation dynamics of charge carriers. The result indicates the presence of correlation between motions of mobile ion charges. The activation energies extracted from M′(ω) and M″(ω) peaks are found to follow the Arrhenius law. The electrical conductance of the samples found to be dependent on the temperature and frequency.  相似文献   

11.
Melilite type ceramics ABC3O7 such as La1.54Sr0.46Ga3O7.27 are a new class of oxide conductors where the conductivity is carried out through interstitial oxygen ions. This work presents the attempt to replace the A-site element La with the other lanthanide elements and Y, resulting in various Ln1 + xSr1 − xGa3O7 + x/2 ceramics, in which Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y, and 0.1 < x < 0.54. X-ray diffraction analysis shows that the melilite structure could be formed when the replacement is conducted with most lanthanides but not Yb and Y. Impedance spectroscopy demonstrates that the conductivity decreases dramatically with the decreasing of Ln3+ size and the charge-carrier concentration. These results suggest that, as an interstitial oxide ion electrolyte, La1.54Sr0.46Ga3O7.27 is the most promising ceramic in the Ln1 + xSr1 − xGa3O7+x/2 melilite family since La3+ has the largest ionic radius of the lanthanide elements.  相似文献   

12.
Ceramic solid solutions (Bi1-yLay)4(V1-xMex)2O11-y with x, y < 0.2, Me-Zr, Ga, Fe, Cu, have been prepared by the solid state reaction method. Crystal structure parameters, phase transitions, dielectric and transport properties of ceramic samples have been studied. Concentration and temperature stability regions of monoclinic α-, orthorhombic β- and tetragonal γ- or γ’- polymorph modifications have been determined.Annealing of samples, containing large amount of Cu and/or La dopants, at 973 K in the reducing atmosphere resulted in their decomposition, though compositions containing low content of La, Ga or Zr dopants, remained pretty stable.  相似文献   

13.
We present a comparative analysis of the orderdisorder transitions in Ln2(M2  xLnx)O7  δ (Ln = SmLu; M = Ti, Zr, Hf; x = 0, 0.096) pyrochlore-like compounds and solid solutions existing in the Ln2O3MO2 systems. In the range ~ 6001200 °C, Ln2Ti2O7 (Ln = SmLu) and Ln2Zr2O7 (Ln = SmGd) undergo ordering transitions, F? → PI → P, which culminate in the formation of an ideal pyrochlore structure, P, existing between 1100 and 1300 °C. Above 1300 °C, Ln2Ti2O7 (Ln = GdLu), Ln2Zr2O7 (Ln = SmGd) and Ln2Hf2O7 (Ln = EuTb) exist as oxygen-ion-conducting phases, PII, disordered in both the oxygen and cation sublattices. Ionic conductivity data for Ln2(M2  xLnx)O7  δ (Ln = SmLu; M = Ti, Zr, Hf; x = 0, 0.096) synthesized at 1600-1670 °C indicate that the highest conductivity in these systems is typically offered by nominally stoichiometric (Ln:M = 1:1), disordered Ln2M2O7 (Ln = SmLu; M = Ti, Zr, Hf) pyrochlores containing anti-structure pairs (LnM' + MLn) and oxygen vacancies (VO••) on the 48f (O2) site. The highest conductivity of Yb2Ti2O7, in which the cations have the smallest radii among the lanthanides and Group IVa metals, seems to be due to the increased role of the geometric factor in the Ln2Ti2O7 (Ln = Sm-Lu) pyrochlores with predominantly covalent metaloxygen bonding M-O (Ti-O). The ion transport parameters in these materials are determined primarily by the relationship between the sizes of the mobile oxygen ions and conduction channels.  相似文献   

14.
The oxygen nonstoichiometry of La0.6Sr0.4FeO3 − δ was measured at intermediate temperatures (773 to 1173 K) between 1 bar and the decomposition oxygen partial pressure by thermogravimetry and coulometric titration. The decomposition of the ABO3 perovskite phase was found to occur at low oxygen partial pressures (below 10− 20 bar). Using an atmosphere-controlled high-temperature XRD setup, the rhombohedral lattice parameters were obtained between 10− 4 and 1 bar at 773 to 1173 K. A phase transition from rhombohedral to cubic might be expected to occur at high temperatures and for δ near the plateau at δ = [Sr] / 2. The lattice expansion was separated into “pure” thermal and chemically induced expansion by combining the lattice parameters with the oxygen nonstoichiometry data. The linear thermal expansion was formulated with a “pure” thermal expansion coefficient of αth = 11.052 · 10− 6 K− 1 and a chemical expansion coefficient of αchem = 1.994 · 10− 2.The results were compared with previous data obtained for La0.6Sr0.4Co1 − yFeyO3 − δ with y = 0.2-0.8. La0.6Sr0.4FeO3 − δ was confirmed to show the highest thermo-chemical stability. While the chemical expansion of La0.6Sr0.4Co1 − yFeyO3 − δ seems little affected by the iron content, the thermal expansion coefficient was the lowest for La0.6Sr0.4FeO3 − δ.  相似文献   

15.
This study evaluated potential applications of green to yellow-emitting phosphors (Sr1−xSi2O2N2: Eu2+x) in blue pumped white light emitting diodes. Sr1-xSi2O2N2: Eu2+x was synthesized at different Eu2+ doping concentrations at 1450 °C for 5 h under a reducing nitrogen atmosphere containing 5% H2 using a conventional solid reaction method. The X-ray diffraction patterns of the prepared phosphor (Sr1-xSi2O2N2: Eu2+x) were indexed to the SrSi2O2N2 phase and an unknown intermediate phase. The photoluminescence properties of these phosphors (Sr1−xSi2O2N2: Eu2+x) showed that the samples were excited from the UV to visible region due to the strong crystal field splitting of the Eu2+ ion. The emission spectra under excitation of 450 nm showed a bright color at 545-561 nm. The emission intensity increased gradually with increasing Eu2+ doping concentration ratio from 0.05 to 0.15. However, the emission intensity decreased suddenly when the Eu2+ concentration ratio was >0.2. As the doping concentration of Eu2+ was increased, there was a red shift in the continuous emission peak. These results suggest that Sr1-xSi2O2N2: Eu2+x phosphor can be used in blue-pumped white light emitting diodes.  相似文献   

16.
Bismuth ferrite (BFO) and La-substituted BFO with composition Bi1−xLaxFeO3 (x=0.05, 0.1 and 0.15) (BLFOx=0.05-0.15) ceramics were prepared using the solid state reaction route. A structural phase transition from rhombohedral phase to triclinic phase was observed for BLFOx=0.05-0.15 ceramics. Modulus spectroscopy reveals the deviation of dielectric behavior from ideal Debye characteristics and the dependence of conductivity on ion hopping in BFO and BLFOx=0.05-0.15 ceramics. The conductivity of the BFO ceramics decreases for La content of 5 mol%, followed by a subsequent increase with 10 and 15 mol% of lanthanum doping. The typical values of the activation energies at high temperature reveal the contribution of short range movement of doubly ionized oxygen vacancies to the conduction process in BFO and BLFOx=0.05 ceramics. Both short range and long range motion of oxygen vacancies are responsible for large conductivity in BLFOx=0.1 and 0.15 ceramics.  相似文献   

17.
Glasses with composition xBi2O3·(30−x)M2O·70B2O3 (M=Li, Na) containing 2 mol% V2O5 have been prepared over the range 0≤x≤15 (x is in mol%). The electron paramagnetic resonance spectra of VO2+ of these glasses have been recorded in the X-band (≈9.3 GHz) at room temperature (RT≈300 K). Spin Hamiltonian parameters, g, g, A, A, dipolar hyperfine coupling parameter, P, and Fermi contact interaction parameter, K, have been calculated. The molecular orbital coefficients, α2 and γ2, have been calculated by recording the optical transmission spectra. In xBi2O3·(30−x)Li2O·70B2O3 glasses there is decrease in the tetragonality of the V4+O6 complex for x up to 6 mol% whereas for x≥6 mol%, tetragonality increases. In xBi2O3·(30−x)Na2O·70B2O3 glasses there is increase in the tetragonality of the V4+O6 complex with increasing x. The 3dxy orbit expands with increase in Bi2O3:M2O ratio. Values of the theoretical optical basicity, Λth, have also been reported. The DC conductivity increases with increase in temperature. The order of conductivity is 10−5 ohm−1 m−1 at low temperature and 10−3 ohm−1 m−1 at high temperature. The DC conductivity decreases and the activation energy increases with increase in Bi2O3:M2O ratio.  相似文献   

18.
Photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) measurements have been performed on HfSixOy and HfSixOyNz dielectric layers, which are potential candidates as high-k transistor gate dielectrics. The hafnium silicate layers, 3-4 nm thick, were formed by codepositing HfO2 and SiO2 (50%:50%) by MOCVD at 485 °C on a silicon substrate following an IMEC clean. Annealing the HfSixOy layer in a nitrogen atmosphere at 1000 °C resulted in an increase in the Si4+ chemical shift from 3.5 to 3.9 eV with respect to the Si0 peak. Annealing the hafnium silicate layer in a NH3 atmosphere at 800 °C resulted in the incorporation of 10% nitrogen and the decrease in the chemical shift between the Si4+ and the Si0 to 3.3 eV. The results suggest that the inclusion of nitrogen in the silicate layer restricts the tendency of the HfO2 and the SiO2 to segregate into separate phases during the annealing step. Synchrotron radiation valence band photoemission studies determined that the valence band offsets were of the order of 3 eV. X-ray absorption measurements show that the band gap of these layers is 4.6 eV and that the magnitude of the conduction band offset is as little as 0.5 eV.  相似文献   

19.
The positive secondary ion yields of B+ (dopant), Si+ and Ge+ were measured for Si1−xGex (0 ≤ x ≤ 1) sputtered by 5.5 keV 16O2+ and 18O2+. It is found that the useful yields of Ge+ and B+ suddenly drop by one order of magnitude by varying the elemental composition x from 0.9 to 1 (pure Ge). In order to clarify the role of oxygen located near surface regions, we determined the depth profiles of 18O by nuclear resonant reaction analysis (NRA: 18O(p,α)15N) and medium energy ion scattering (MEIS) spectrometry. Based on the useful yields of B+, Si+ and Ge+ dependent on x together with the elemental depth profiles determined by NRA and MEIS, we propose a probable surface structure formed by 5.5 keV O2+ irradiation.  相似文献   

20.
A series of layered-type pseudo four-component Li-Ni-Co-Ti oxides were prepared to explore optimal cathode materials for a lithium-ion secondary battery. The new layered-type compounds were prepared using a combinatorial material-preparation system based on electrostatic spray deposition (the “M-ist Combi” system), and combinatorial powder X-ray diffraction. The composition region of the new compounds (Liα(NixCoyTiz)O2 (α∼1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z∼0.2, x + y + z = 1.0)) was found to be wider than the composition region previously reported (LiNi0.8−yCo0.2TiyO2 (0 ≤ y ≤ 0.1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号