首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conditions on a topological space X under which the space C(X,R) of continuous real-valued maps with the Isbell topology κ is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in Cκ(X,R) if and only if X is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in Cκ(X,R) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if X is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.  相似文献   

2.
Let C(X,Y) be the set of all continuous functions from a topological space X into a topological space Y. We find conditions on X that make the Isbell and fine Isbell topologies on C(X,Y) equal for all Y. For zero-dimensional spaces X, we show there is a space Z such that the coincidence of the Isbell and fine Isbell topologies on C(X,Z) implies the coincidence on C(X,Y) for all Y. We then consider the question of when the Isbell and fine Isbell topologies coincide on the set of continuous real-valued functions. Our results are similar to results established for consonant spaces.  相似文献   

3.
Let R denote the real numbers. We construct in ZFC a countable space X such that X has exactly one non-isolated point, X is infraconsonant, and X is not consonant. We conclude that X is a completely regular space such that Isbell topology on C(X,R) is a group topology that coincides with the natural (finest splitting) topology on C(X,R), but the Isbell and compact-open topologies on C(X,R) do not coincide. The example answers two open problems in the literature.  相似文献   

4.
We characterize those topological spaces Y for which the Isbell and finest splitting topologies on the set C(X,Y) of all continuous functions from X into Y coincide for all topological spaces X. We also consider the same question for the coincidence of the restriction of the finest splitting topology on the upper semicontinuous set-valued functions to C(X,Y) and the finest splitting topology on C(X,Y). In the first case, the spaces in question are, after identifying points that are in each others closures, subsets of the two point Sierpiński space, which gives a converse and generalization of a result of S. Dolecki, G.H. Greco, and A. Lechicki. In the second case, the spaces in question are, after identifying points that are in each others closures, order bases for bounded complete continuous DCPOs with the Scott topology.  相似文献   

5.
This paper studies the compact-open topology on the set KC(X) of all real-valued functions defined on a Tychonoff space, which are continuous on compact subsets of X. In addition to metrizability, separability and second countability of this topology on KC(X), various kinds of topological properties of this topology are studied in detail. Actually the motivation for studying the compact-open topology on KC(X) lies in the attempt of having a simpler proof for the characterization of a completeness property of the compact-open topology on C(X), the set of all real-valued continuous functions on X.  相似文献   

6.
It is known (see, for example, [H. Render, Nonstandard topology on function spaces with applications to hyperspaces, Trans. Amer. Math. Soc. 336 (1) (1993) 101-119; M. Escardo, J. Lawson, A. Simpson, Comparing cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105-145; D.N. Georgiou, S.D. Iliadis, F. Mynard, Function space topologies, in: Open Problems in Topology 2, Elsevier, 2007, pp. 15-23]) that the intersection of all admissible topologies on the set C(Y,Z) of all continuous maps of an arbitrary space Y into an arbitrary space Z, is always the greatest splitting topology (which in general is not admissible). The following, interesting in our opinion, problem is arised: when a given splitting topology (for example, the compact-open topology, the Isbell topology, and the greatest splitting topology) is the intersection of k admissible topologies, where k is a finite number. Of course, in this case this splitting topology will be the greatest splitting.In the case, where a given splitting topology is admissible the above number k is equal to one. For example, if Y is a locally compact Hausdorff space, then k=1 for the compact-open topology (see [R.H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945) 429-432; R. Arens, A topology for spaces of transformations, Ann. of Math. 47 (1946) 480-495; R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31]). Also, if Y is a corecompact space, then k=1 for the Isbell topology (see [P. Lambrinos, B.K. Papadopoulos, The (strong) Isbell topology and (weakly) continuous lattices, in: Continuous Lattices and Applications, in: Lect. Notes Pure Appl. Math., vol. 101, Marcel Dekker, New York, 1984, pp. 191-211; F. Schwarz, S. Weck, Scott topology, Isbell topology, and continuous convergence, in: Lect. Notes Pure Appl. Math., vol. 101, Marcel Dekker, New York, 1984, pp. 251-271]).In [R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31] a non-locally compact completely regular space Y is constructed such that the compact-open topology on C(Y,S), where S is the Sierpinski space, coincides with the greatest splitting topology (which is not admissible). This fact is proved by the construction of two admissible topologies on C(Y,S) whose intersection is the compact-open topology, that is k=2.In the present paper improving the method of [R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31] we construct some other non-locally compact spaces Y such that the compact-open topology on C(Y,S) is the intersection of two admissible topologies. Also, we give some concrete problems concerning the above arised general problem.  相似文献   

7.
8.
This study looks at some subgroups of the group H(C(X)) of homeomorphisms on the space C(X) of continuous real-valued functions on a topological space X, where C(X) has the compact-open topology. The main result shows that, for certain spaces X, the subgroup of H(C(X)) generated by the algebraic and vertical homeomorphisms on C(X) is dense in H(C(X)) with the pointwise topology. Also, for X equal to the unit interval, a subgroup of H(C(X)) is developed using integration of the members of C(X), and this subgroup is used as an example and to illustrate certain properties that subgroups of H(C(X)) can have.  相似文献   

9.
10.
Let X be a completely regular Hausdorff space and Cb(X) be the space of all real-valued bounded continuous functions on X, endowed with the strict topology βσ. We study topological properties of continuous and weakly compact operators from Cb(X) to a locally convex Hausdorff space in terms of their representing vector measures. In particular, Alexandrov representation type theorems are derived. Moreover, a Yosida-Hewitt type decomposition for weakly compact operators on Cb(X) is given.  相似文献   

11.
Let A be a lattice-ordered algebra endowed with a topology compatible with the structure of algebra. We provide internal conditions for A to be isomorphic as lattice-ordered algebras and homeomorphic to Ck(X), the lattice-ordered algebra C(X) of real continuous functions on a completely regular and Hausdorff topological space X, endowed with the topology of uniform convergence on compact sets. As a previous step, we determine this topology among the locally m-convex topologies on C(X) with the property that each order closed interval is bounded.  相似文献   

12.
In [M.H. Escardo, J. Lawson, A. Simpson, Comparing cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105-145] it is shown that in the set C(Nω,N) of all continuous maps of Nω into N, where N is an infinitely countable discrete topological space, the compact-open topology is not the finest splitting topology. Since Nω is consonant (see [S. Dolecki, G.H. Greco, A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide? Trans. Amer. Math. Soc. 347 (1995) 2869-2884]) the Isbell topology on C(Nω,N) also is not the finest splitting topology. This result is generalized in the present paper proving that it is true also for spaces having the so-called Specific Extension Property. The following spaces have the Specific Extension Property: (a) infinitely countable free unions of non-empty spaces, (b) non-compact Lindelöf zero-dimensional spaces, and (c) metric locally convex linear spaces. In particular, we prove that on the set of all real-valued functions on the (separable infinite dimensional) Hilbert space the compact-open topology does not coincide with the finest splitting topology.  相似文献   

13.
For a Tychonoff space X, we denote by Cλ(X) the space of all real-valued continuous functions on X with set-open topology. In this paper, we study the topological-algebraic properties of Cλ(X). Our main results state that (1) Cλ(X) is a topological vector space (a topological group) iff λ is a family of C-compact sets and Cλ(X)=Cλ(X), where λ consists of all C-compact subsets of every set of λ. In particular, if Cλ(X) is a topological group, then the set-open topology coincides with the topology of uniform convergence on a family λ; (2) a topological group Cλ(X) is ω-narrow iff λ is a family of metrizable compact subsets of X.  相似文献   

14.
Let C(X,G) be the group of continuous functions from a topological space X into a topological group G with pointwise multiplication as the composition law, endowed with the uniform convergence topology. To what extent does the group structure of C(X,G) determine the topology of X? More generally, when does the existence of a group homomorphism H between the groups C(X,G) and C(Y,G) implies that there is a continuous map h of Y into X such that H is canonically represented by h? We prove that, for any topological group G and compact spaces X and Y, every non-vanishing C-isomorphism (defined below) H of C(X,G) into C(Y,G) is automatically continuous and can be canonically represented by a continuous map h of Y into X. Some applications to specific groups and examples are given in the paper.  相似文献   

15.
For a given bi-continuous semigroup (T(t)) t⩾0 on a Banach space X we define its adjoint on an appropriate closed subspace X° of the norm dual X′. Under some abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak topology σ(X°,X). We give the following application: For Ω a Polish space we consider operator semigroups on the space Cb(Ω) of bounded, continuous functions (endowed with the compact-open topology) and on the space M(Ω) of bounded Baire measures (endowed with the weak*-topology). We show that bi-continuous semigroups on M(Ω) are precisely those that are adjoints of bi-continuous semigroups on Cb(Ω). We also prove that the class of bi-continuous semigroups on Cb(ω) with respect to the compact-open topology coincides with the class of equicontinuous semigroups with respect to the strict topology. In general, if is not a Polish space this is not the case.  相似文献   

16.
It is well known that (see, for example, [H. Render, Nonstandard topology on function spaces with applications to hyperspaces, Trans. Amer. Math. Soc. 336 (1) (1993) 101-119; M. Escardo, J. Lawson, A. Simpson, Comparing cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105-145; D.N. Georgiou, S.D. Iliadis, F. Mynard, in: Elliott Pearl (Ed.), Function Space Topologies, Open Problems in Topology, vol. 2, Elsevier, 2007, pp. 15-22]) the intersection of all admissible topologies on the set C(Y,Z) of all continuous maps of an arbitrary space Y into an arbitrary space Z, is always the greatest splitting topology. However, this intersection maybe not admissible. In the case, where Y is a locally compact Hausdorff space the compact-open topology on the set C(Y,Z) is splitting and admissible (see [R.H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945) 429-432; R. Arens, A topology for spaces of transformations, Ann. of Math. 47 (1946) 480-495; R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31]), which means that the intersection of all admissible topologies on C(Y,Z) is admissible. In [R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31] an example of a non-locally compact Hausdorff space Y is given having the same property for the case, where Z=[0,1], that is on the set C(Y,[0,1]) the compact-open topology is splitting and admissible. This space Y is the set [0,1] with a topology τ, whose semi-regular reduction coincides with the usual topology on [0,1]. Also, in [R. Arens, J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951) 5-31, Theorem 5.3] another example of a non-locally compact space Y is given such that the compact-open topology on the set C(Y,[0,1]) is distinct from the greatest splitting topology.In this paper first we construct non-locally compact Hausdorff spaces Y such that the intersection of all admissible topologies on the set C(Y,Z), where Z is an arbitrary regular space, is admissible. Furthermore, for a Hausdorff splitting topology t on C(Y,Z) we find sufficient conditions in order that t to be distinct from the greatest splitting topology. Using this result, we construct some concrete non-locally compact spaces Y such that the compact-open topology on C(Y,Z), where Z is a Hausdorff space, is distinct from the greatest splitting topology. Finally, we give some open problems.  相似文献   

17.
Let X be a Tychonoff space, C(X) be the space of all continuous real-valued functions defined on X and CL(X×R) be the hyperspace of all nonempty closed subsets of X×R. We prove the following result. Let X be a countably paracompact normal space. The following are equivalent: (a) dimX=0; (b) the closure of C(X) in CL(X×R) with the Vietoris topology consists of all FCL(X×R) such that F(x)≠∅ for every xX and F maps isolated points into singletons; (c) each usco map which maps isolated points into singletons can be approximated by continuous functions in CL(X×R) with the locally finite topology. From the mentioned result we can also obtain the answer to Problem 5.5 in [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] and to Question 5.5 in [R.A. McCoy, Comparison of hyperspace and function space topologies, Quad. Mat. 3 (1998) 243-258] in the realm of normal, countably paracompact, strongly zero-dimensional spaces. Generalizations of some results from [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] are also given.  相似文献   

18.
If X is a compact-covering image of a closed subspace of product of a σ-compact Polish space and a compact space, then Ck(X,M), the space of continuous maps of X into M with the compact-open topology, is stratifiable for any metric space M.If X is σ-compact Polish, K is compact and M metric then every point of Ck(X×K,M) has a closure-preserving local base, and hence this function space is M1.  相似文献   

19.
The complete Boolean homomorphisms from the category algebra C(X) of a complete matrix space X to the category algebra C(Y) of a Baire topological space Y are characterized as those σ-homomorphisms which are induced by continuous maps from dense G8-subsets of Y into X. This result is used to deduce a series of related results in topology and measure theory (some of which are well-known). Finally a similar result for the complete Boolean homomorphisms from the category algebra C(X) of a compact Hausdorff space X tothe category algebra C(Y) of a Baire topological space Y is proved.  相似文献   

20.
Let (X,τ) be a topological space and let ρ be a metric defined on X. We shall say that (X,τ) is fragmented by ρ if whenever ε>0 and A is a nonempty subset of X there is a τ-open set U such that UA≠∅ and ρ−diam(UA)<ε. In this paper we consider the notion of fragmentability, and its generalisation σ-fragmentability, in the setting of topological groups and metric-valued function spaces. We show that in the presence of Baireness fragmentability of a topological group is very close to metrizability of that group. We also show that for a compact Hausdorff space X, σ-fragmentability of (C(X),‖⋅) implies that the space Cp(X;M) of all continuous functions from X into a metric space M, endowed with the topology of pointwise convergence on X, is fragmented by a metric whose topology is at least as strong as the uniform topology on C(X;M). The primary tool used is that of topological games.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号