首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source “prompt” fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis.
Graphical Abstract ?
  相似文献   

2.
Lipooligosaccharides (LOS) are powerful Gram-negative glycolipids that evade the immune system and invade host animal and vegetal cells. The structural elucidation of LOS is pivotal to understanding the mechanisms of infection at the molecular level. The amphiphilic nature of LOS has been the main obstacle for structural analysis by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Our approach has resolved this important issue and has permitted us to obtain reflectron MALDI mass spectra of LOS to reveal the fine chemical structure with minimal structural variations. The high-quality MALDI mass spectra show LOS species characteristic of molecular ions and defined fragments due to decay in the ion source. The in-source decay yields B-type ions, which correspond to core oligosaccharide(s), and Y-type ions, which are related to lipid A unit(s). MALDI tandem time-of-flight (TOF/TOF) MS of lipid A allowed for the elucidation of its structure directly from purified intact LOS without the need for any chemical manipulations. These findings constitute a significant advancement in the analysis of such an important biomolecule by MALDI MS.  相似文献   

3.
Ionization and prompt fragmentation patterns of triacylglycerols, phospholipids (PLs) and galactolipids were investigated using matrix-assisted laser desorption/ionization (MALDI). Positive ions of non-nitrogen-containing lipids appeared only in the sodiated form, while nitrogen-containing lipids were detected as both sodiated and protonated adducts. Lipids containing acidic hydroxyls were detected as multiple sodium adducts or deprotonated ions in the positive and negative modes, respectively, with the exception of phosphatidylcholines. The positive MALDI spectra of triacylglycerols contained prompt fragments equivalent to the loss of RCOO(-) from the neutral molecules. Prompt fragment ions [PL-polar head](+) were observed in the positive MALDI spectra of all phospholipids except phosphatidylcholines. The phosphatidylcholines produced only a minor positive fragment corresponding to the head group itself (m/z 184). Galactolipids did not undergo prompt fragmentation. Post-source decay (PSD) was used to examine the source of prompt fragments. PSD fragment patterns indicated that the lipid prompt fragment ions did not originate from the observed molecular ions (sodiated or protonated), and suggested that the prompt fragmentation followed the formation of highly unstable, probably protonated, precursor ions. Pathways leading to the formation of prompt fragment ions are proposed.  相似文献   

4.
Aerosol matrix-assisted laser desorption ionization (MALDI) with a reflection time-of-flight mass spectrometer was used to study fragmentation of vitamin B12. Six MALDI matrices were used: 2,5-di-hydroxy benzoic acid (gentisic acid), 4-nitroaniline, 3,5-dimethoxy-4-hydroxy cinnamic acid (sinapic acid), 3,4-di-hydroxy cinnamic acid (caffeic acid), trans-4-hydroxy-3-methoxy cinnamic acid (ferulic acid), and α-cyano-4-hydroxy cinnamic acid (4-HCCA). Mass spectra were obtained with a 355-nm pulsed Nd:YAG laser at irradiances between 0. 1 and 5 GW/cm2 (between 3- and 150-mJ pulse energy). Loss of CN was a major product of prompt ion source fragmentation and the ratio of fragmented to intact analyte was found to be strongly dependent on matrix and weakly dependent on laser irradiance. Additionally, free cobalt ions and cobalt ions bound to small methanol clusters were observed in the mass spectra. The cobalt removal from the corrin ring of vitamin B12 results from direct photon absorption by vitamin B12, but is enhanced by the presence of matrix.  相似文献   

5.
A strategy for the characterization of bacterial lipoprotein-in this case Braun’s lipoprotein (an outer membrane 7-ku lipoprotein) isolated from Escherichia coli—is described by time-of-flight mass spectrometric (TOF/MS) techniques [252Cf plasma desorption (PD) TOF/MS and matrix-assisted laser desorption-ionization (MALDI) TOF/MS]. Covalent linkage of lipid at the N-terminal cysteine (posttranslationally modified to a S-[2,3-bis(acyloxy)-propyl]-N-acylcysteine) and, therefore, strict insolubility in aqueous solution constitute common features for this class of proteins. Relative molecular mass determination of the major molecular species of Braun’s lipoprotein was obtained by selection of an appropriate mixture of organic solvents compatible with matrix/support materials useful for the mass spectrometric techniques applied. Minor components of this lipoprotein that differ only in the fatty acid composition of the lipid anchor were detected by PD TOF/MS after enzymatic release of the extremely hydrophobic N-terminal amino acid followed by selective extraction with chloroform. Part of the primary sequence of this lipoprotein was confirmed based on peptide fragment ions observed in the positive ion PD mass spectra of cyanogen bromide-generated peptide fragments that had been isolated previously by reverse phase high-performance liquid chromatography (HPLC). Peptidoglycan fragments that represent the attachment sites of lipoprotein to peptidoglycan were enzymatically released, separated by reverse phase HPLC, and finally characterized by time-of-flight mass spectrometric techniques (252Cf-PD TOF/MS, MALDI TOF/MS). The results obtained with both techniques differed only in the better sensitivity obtained with MALDI TOF/MS, which consumed a factor of 100 to 1000 less material than with PD TOF/MS.  相似文献   

6.
Haemophilus ducreyi, a gram-negative human mucosal pathogen, is one of the principal causes of genital ulcer disease. The lipooligosaccharides (LOS) of these bacteria are considered to be a major virulence factor and have been implicated in the adherence and invasion of H. ducreyi to several human cell types. An isogenic heptosyltransferase-III knockout strain (waaQ) was recently constructed from H. ducreyi 35000 wild-type strain and immunochemical and molecular weight data of the isolated LOS suggested the presence of poly-N-acetyllactosamine (LacNAc) (Filiatrault et al., Infect. Immun. 2000, 68, 3352-3361). In this present study, the structures of these novel LOS-glycoforms were characterized by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry in combination with exoglycosidase digestion. Detailed structural information was obtained for the oligosaccharide (OS) portions of these LOS showing between one to five linear LacNAc repeats on the non-reducing terminus of the main oligosaccharide branch. When grown on solid media, the organism produced LacNAc repeats that were further modified by the addition of sialic acid. Enzymatic digestion with beta-galactosidase, beta-N-acetylhexosaminidase, and neuraminidase type VI-A yielded truncated glycoforms consistent with a polyLacNAc structure capped at various end points with sialic acid. ESI-MS/MS mass spectrometry on a quadrupole time-of-flight instrument was particularly effective in obtaining detailed structural information on the least abundant, high-mass glycoforms. Although LOS containing terminal di-LacNAc have been reported, this is the first time to our knowledge that a linear polyLacNAc structure has been characterized in bacteria.  相似文献   

7.
Time-of-flight (TOF) mass spectra for a peptide (Y6) were obtained by utilizing matrix-assisted infrared laser desorption ionization (IR-MALDI) with glycerol as the matrix and by ultraviolet MALDI with α-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA), and 2,5-dihydroxybenzoic acid (DHB). Collisional activation during ion extraction and exothermicity in the gas-phase proton transfer were found to be unimportant as the driving forces for in-source (ISD) and post-source (PSD) decays, indicating that the thermal energy acquired during photo-ablation is responsible for their occurrence. The temperatures of [Y6 + H]+ in the ‘early’ and ‘late’ matrix plumes were estimated by the kinetic analysis of the ISD and PSD yields, respectively. The order of the temperatures was glycerol < DHB ≈ SA < CHCA in the early plume and glycerol < DHB < SA < CHCA in the late plume. For each matrix, the temperature in the late plume was lower than in the early plume by 300–400 K, which was attributed to expansion cooling. The model (thermalization followed by expansion cooling) proposed to explain the occurrence of both rapid ISD and slow PSD is not only in sharp contrast with but also mutually exclusive with the prevailing explanation that the exothermicity in proton transfer and in-plume collisional activation are the driving forces for ion fragmentation in MALDI. The model also explains why MALDI is more successful for mass spectrometry of labile molecules than other desorption techniques that do not utilize a matrix. Factors affecting the plume temperature are also discussed.  相似文献   

8.
In the first part of this study fragmentation patterns from a range of dextran oligomers (containing 4-20 anhydroglucose units) were compared in three different methods of analysis coupled with matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry. Collision-induced-dissociation (CID), prompt in-source decay (ISD) and post-source decay (PSD) all caused cleavage of the glycosidic bonds. Both CID and to a lesser extent ISD caused further cleavage of pyranose rings of the individual sugar residues. There was very little cleavage of pyranose rings detected in the PSD spectrum. Derivatisation of the reducing end-groups of the oligodextrans with 1-phenyl-3-methyl-5-pyrazolone (PMP) restricted cleavage in the MALDI mass spectrometer to the non-reducing end, and further it enabled the saccharides to be separated by HPLC so that a single chain length could be examined as a standard. Maltoheptaose was also used as a standard. In the second part of the study prompt ISD-MALDI mass spectrometry was used to compare the fragmentation of three oligoglucans, dextran, maltodextrin and gamma cyclodextrin, that have different linkages and different secondary structure. The results showed that the degree of fragmentation correlated with the degree of freedom in the saccharide chains in solution determined by NMR. Dextran the most random conformation was fragmented most whereas there was little evidence of any fragments, not even glycosidic bond breakage from cyclodextrin, even when the laser power was increased considerably. The fragmentation pattern of maltodextrin was intermediate. The patterns of fragmentation produced by MALDI mass spectrometry, particularly where standards are available to calibrate the spectrum and the energy of the laser is controlled, can be used to predict the type of linkage present.  相似文献   

9.
In-source decay (ISD) and post-source decay (PSD) of a peptide ion ([Y6 + H]+) and a preformed ion (benzyltriphenylphosphonium, BTPP) generated by matrix-assisted laser desorption ionization (MALDI) were investigated with time-of-flight mass spectrometry. α-Cyano-4-hydroxycinammic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) were used as matrices. For both ions, ISD yield was unaffected by delay time, indicating rapid termination of ISD. This was taken as evidence for rapid expansion cooling of hot “early” plume formed in MALDI. CHCA was hotter than DHB for [Y6 + H]+ while the matrix effect was insignificant for BTPP. The “early” plume temperature estimated utilizing previous kinetic results was 800–900 K, versus 400–500 K for “late” plume. The results support our previous finding that the temperature of peptide ions interrogated by tandem mass spectrometry was lower than most rough estimates of MALDI temperature.  相似文献   

10.
Fibrinopeptide B (M r 1552.58) was employed as a calibration compound for matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) post-source decay (PSD) fragment ion analysis in the negative mode. Experiments were performed by using both continuous and delayed extraction, with the maximum reflectron voltages being 30 and 21 kV, respectively. For comparison, a common positive ion PSD calibrant, ACTH(18–39) (M r 2466.7), was also employed with positive ion calibration constants being applied to negative ion spectra. Using fibrinopeptide B as the calibrant, the negative ion PSD results for angiotensin II (M r 1046.2), renin substrate tetradecapeptide (horse) (M r 1759.0), and the custom-synthesized peptide (K2G4)2 (M r 987.1) showed a factor of 1.5–2 improvement in absolute mass accuracy. Typical absolute mass-to-charge ratio accuracies were within ±1 Thomson and were achieved even when the peptide being analyzed was more massive than fibrinopeptide B. In addition, both calibrants showed increased accuracy when experiments were conducted in the delayed extraction mode. Other advantages of using fibrinopeptide B are its moderate cost and the ability to perform calibration and sample analysis for negative ion PSD under the same instrumental conditions.  相似文献   

11.
Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y–46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c?+57 and z–57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.
Graphical Abstract ?
  相似文献   

12.
《Analytical letters》2012,45(6):1101-1113
Abstract

Matrix‐assisted laser desorption and ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (MS) was used to evaluate the lipid composition of human blood plasma. The focus was on parameters affecting the spectral quality: The laser intensity had the highest impact and must be set as low as possible. Additionally, salt removal by lipid extraction led to an enhanced reproducibility. Surprisingly, the influence of storage time of a given plasma sample was only weak.

It will be shown that the lipid MALDI‐TOF mass spectra allow the differentiation of nutrition habits. The comparison between vegetarians and normal volunteers indicated a higher phosphatidylcholine to triacylglycerol and phosphatidylcholine to lysophosphatidylcholine ratio in the plasma of the vegetarians.  相似文献   

13.
We are currently developing strategies to synthesize bisubstrate analogs as potential inhibitors of serine and tyrosine protein kinases; several such analogs have been synthesized. The initial target proteins were the cAMP dependent protein kinase (cAPK) and the Ca+2/calmodulin dependent protein kinase (CaM kiiase II). These bisubstrate analogs were based on either known peptide substrates such as kemptide, a seven amino acid peptide substrate of cAPK, or on inhibitory peptides such as a seventeen amino acid peptide encompassing the autoinhibitory domain of CaM kinase II. Peptides containing a single phosphoserine group were first synthesized and then adenosine 5′-monophosphate (AMP), adenosine 5′-diphosphate (ADP), or adenosine 5′-triphosphate (ATP) was coupled through the serine phosphate with prior activation by 1,1-carbonyldiimidazole using either a solution or solid phase reaction scheme. In this current study, we report the characterization of the bisubstrate analogs by liquid secondary ionization mass spectrometry (LSIMS), matrix-assisted laser desorption mass spectrometry (MALDI), and tandem mass spectrometry (MS/MS). In the positive-ion mode, the LSIMS spectra of the bisubstrate analogs yielded a series of molecular ions containing mono-, di-, and trivalent cation adducts. Cation adducts were absent in the negative-ion mode where the dominant species were deprotonated molecular ions, [M ? H]?, making this latter technique more useful for confirming product identity and assessing purity. Analysis of these compounds by MALDI in both the positive- and negative-ion modes yielded molecular ions which also contained metal ion adducts, although they were limited primarily to Fe+2 adducts. Unlike LSIMS, the MALDI spectra showed no evidence for the elimination of the phosphoadenosine or other structural moieties. When these compounds were subjected to high energy collision-induced dissociation (CID), the dominant fragmentation pathways under positive-ion MS/MS conditions resulted from cleavage of the phosphate linkages to the adenosine moiety with charge retention on the peptide, although a major peak for 5′-deoxyadenosine was also seen at m/z 250. Charge retention in the negative-ion mode was most pronounced for ion fragments containing the highly acidic phosphate moieties and yielded phosphoadenosine related ions, for example, (AMP-H)?, (AMP-H-H2O)?, (ADP-H)?, etc., as well as ions originating from the phosphate linker such as PO3 ?, H2PO4 ?, HP2O6 ?, H3P2O7 ?, and H2P3O9 ?. The largest phosphoadenosine ion in the negative-ion CID spectra for each bisubstrate analog, for example, m/z 426 (ADP-H)?, m/z 506 (ATP-H)?, or m/z 586 (AP4-H)?, indicated that the desired covalent modification had been formed between the phosphoserine and APn moieties.  相似文献   

14.
The present study uses the Taguchi method of experimental design to optimize lipid extraction from Spirulina spp. by ultrasound application and mechanical stirring. A Taguchi L9 orthogonal array was used to optimize various parameters, such as methanol: chloroform (M:C) ratio, biomass: solvent ratio, and extraction time for lipid extraction. The results were analyzed using the signal-to-noise (S/N) ratio and analysis of variance (ANOVA). The biomass: solvent ratio significantly influenced lipid content (p < 0.05) with 92.1% and 92.3% contributions to the lipid and S/N ratio data, respectively. The extraction time presented a contribution value of 5.0%, while the M:C ratio presented the most negligible contribution of 0.4% for S/N data. The optimum extraction conditions were: M:C ratio of 1:1, biomass: solvent ratio of 1:60, and extraction time of 30 min. The predominant fatty acids were palmitic acid (44.5%), linoleic acid (14.9%), and gamma-linolenic acid (13.4%). The confirmation experiments indicated a lipid content of 8.7%, within a 95% confidence interval, proving the Taguchi method’s effectiveness in optimizing the process parameters for lipid extraction.  相似文献   

15.
The potential of tandem mass spectrometry following matrix-assisted laser desorption ionization (MALDI) was studied for speciation of selenium. Non-peptide selenium-containing compounds were isolated from a selenized yeast aqueous extract by size-exclusion chromatography. Post-source decay (PSD) was compared with orthogonal quadrupole collision cell dissociation for the purpose of obtaining fragmentation and structural information. In the PSD mode, the use of ion gate covering the whole isotopic cluster of the parent compound allowed the immediate recognition of fragments containing Se and those in which this element was absent. The tandem mass spectra obtained by orthogonal MALDI Q-TOF were equally informative in terms of the number of fragments but suffered from a poorer sensitivity. The mass accuracy was ca. 20 times better in the oMALDI configuration than in the PSD mode. An unknown selenium compound with an m/z 388 was detected with a mass accuracy of 3 ppm according to the proposed empiric formula.  相似文献   

16.
An improved analytical strategy for the analysis of complex lipid mixtures using matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) in combination with high‐performance thin‐layer chromatography (HPTLC) is reported. Positive ion MALDI RTOF MS was applied as a rapid screening tool for the various neutral (e.g. triacylglycerols) and polar (e.g. glycerophospholipids and ‐sphingolipids) lipid classes derived from crude lipid extracts of e.g. human plasma as well as soybean lecithin. Finally, MALDI seamless post‐source decay (PSD) product ion analysis was performed in order to obtain further structural information (head‐ and acyl‐group identification) of selected lipid species and structure verification. A Coomassie Brilliant Blue R‐250 staining protocol for lipids on HPTLC plates was evaluated and was found to be fully compatible with subsequent MALDI‐MS. Lipids were analyzed after elution from the HPTLC phase material of the selected band (corresponding to certain lipid classes) by using the proper organic solvent mixture or in few cases directly from the HPTLC plates (a type of on‐line HPTLC/MALDI‐MS coupling). More than 70 distinct lipid species from seven different lipid classes in the range between m/z 500 and 1500 could be identified from the lipid extracts of human plasma and soybean lecithin, respectively. The general high sensitivity of MALDI‐MS detection allowed the analysis of even minor lipid classes from only very small volumes of human plasma (50 µL). The combination of HPTLC, Coomassie staining and positive ion MALDI curved field RTOF‐MS represents a straightforward strategy during lipidomics studies of food and clinically relevant human lipid samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The gas-phase niobium oxochloride anions that result by the interaction between the finely dispersed stereoselective acetylene cyclotrimerization catalyst NbCl2(C n H n ) (n = 10–12) and atmospheric oxygen and moisture have been characterized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. From the relative intensities of mass spectrometric lines, it has been deduced that, among the various niobium oxochloride species passing into the gas phase under the action of laser radiation, the most abundant monomer ion is NbO2Cl 2 ? , the most abundant dimers are Nb2O4Cl 3 ? and Nb2O3Cl 5 ? , the most abundant trimer is Nb3O6Cl 5 ? , and the most abundant tetramer is Nb4O8Cl 5 ? . The gas phase also contains low concentrations of fragments corresponding to the pentanuclear anion Nb3O11Cl 4 ? and the hexanuclear anion Nb6O15Cl 2 ? . The geometric parameters and total energy of the stable isomers of the dinuclear and polynuclear niobium oxochloride anions existing in the gas phase has been calculated by quantum chemical methods, and their relative thermodynamic stabilities have been determined for different metal core configurations and different arrangements of oxygen and chlorine ions. The stereochemistry of the niobium oxochlorides is discussed.  相似文献   

18.
This paper reports detailed studies on the internal energy of ions formed in matrix-assisted laser desorption/ionization (MALDI) using delayed extraction MALDI-time-of-flight (TOF) and atmospheric pressure (AP) MALDI mass spectrometric (MS) methods. We use benzylpyridinium cations as internal energy probes. Our study reveals three distinct contributions to internal energy build-up in vacuum-MALDI (classical MALDI-TOF), each having different effects on ion fragmentation. Some fragments are formed before ion extraction (i.e. no more than 100 ns after the laser impact), and they are therefore well resolved and recorded as sharp signals in the MALDI-TOFMS scan. This prompt fragmentation can have two origins: (i) in-plume thermal activation, presumably always present, and (ii) in-plume chemical activation, in the course of reactions with hydrogen radicals. In addition to early internal energy build-up associated with these well-resolved promptly formed fragments, a broad peak slightly offset to higher masses could be detected corresponding to fragments formed after the extraction has started. This second signal corresponds to a third source of internal energy in MALDI ions, (iii) the extraction-induced collisional activation of the ions with the neutral components of the plume. These three contributions are difficult to quantify in vacuum-MALDI, because of the combined influence of several parameters (nature of the matrix, spot-to-spot variability, total laser exposure, delay time, acceleration voltage) on extraction-induced fragmentation. AP-MALDI, on the other hand, has two advantages for comparative studies of analyte fragmentation. First, extraction-induced fragmentation is absent, and only the contributions of early plume activation remain. Second, the reproducibility is far better than in vacuum-MALDI. AP-MALDI is therefore expected to shed new light on the early steps of the MALDI process.  相似文献   

19.
Permethylated oligosaccharides were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) using a reflectron time-of-flight instrument in the post-source decay (PSD) mode. Under these ionization conditions, such derivatives yield intense signals corresponding to sodium or potassium cationized molecular species. Fragments observed in the PSD spectra result exclusively from cleavage of glycosidic bonds, preferentially at N-acetylhexosamine residues. A systematic study was carried out on a series of permethylated oligosaccharides to allow rationalization of the fragmentation processes. Fragments originating from both the reducing and the non-reducing ends of the oligosaccharide yield information on sequence and branching. Moreover, glycosyl residues linked in position 3 of HexNAc units give rise to a highly specific elimination process, which allows unambiguous assignment of (1-3) interglycosidic linkages. Special attention was paid to the structural analysis of oligosaccharides carrying the commonly encountered fucosyl and sialyl end-caps. In the case of sialylated residues, a targeted methodology involving desialylation and specific CD3-labeling of the nascent free hydroxyl groups was developed to mark the initial location of sialic acid residues along the oligosaccharide backbone. As accurate mass determination of fragment ions is essential for their assignment, a simplified protocol for the calibration in the PSD mode is described. This procedure allows the determination of the correction function parameters required to process the data for an instrument that employs post-acceleration detection. MALDI/PSD-MS of permethylated oligosaccharides, by providing structural information at the low picomole level, appears to be a valuable complement, or an alternative, to the techniques currently in use for carbohydrate structural analysis.  相似文献   

20.
Pulsed laser polymerization (PLP) experiments were performed on the bulk polymerization of methyl methacrylate (MMA) at ?34 °C. The aim of this study was to investigate the polymer end groups formed during the photoinitiation process of MMA monomer using 2,2‐dimethoxy‐2‐phenylacetophenone (DMPA) and benzoin as initiators via matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Analysis of the MALDI‐TOF spectra indicated that the two radical fragments generated upon pulsed laser irradiation show markedly different reactivity toward MMA: whereas the benzoyl fragment—common to both DMPA and benzoin—clearly participates in the initiation process, the acetal and benzyl alcohol fragments cannot be identified as end groups in the polymer. The complexity of the MALDI‐TOF spectrum strongly increased with increasing laser intensity, this effect being more pronounced in the case of benzoin. This indicates that a cleaner initiation process is at work when DMPA is used as the photoinitiator. In addition, the MALDI‐TOF spectra were analyzed to extract the propagation‐rate coefficient, kp, of MMA at ?34 °C. The obtained value of kp = 43.8 L mol?1 s?1 agrees well with corresponding numbers obtained via size exclusion chromatography (kp = 40.5 L mol?1 s?1). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 675–681, 2002; DOI 10.1002/pola.10150  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号