首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cluster ions of ethylchloride and their dissociation products have been produced in a supersonic expansion of ethylchloride seeded in Ar and energy selected by the threshold photoelectron photoion coincidence (TPEPICO) method. The peak widths of the ion time of flight distribution indicate that all of the clusters are produced by dissociative photoionization of higher order clusters. Thus, trimer ions dissociate to form dimer ions and an ethylchloride monomer. This dimer ion was found to be metastable with respect to the formation of the di-ethylchloronium ion and a chlorine atom. The measured dissociation rate as a function of the dimer ion internal energy was compared to the calculated rates based on the statistical RRKM/QET theory. Good agreement was found when the dimer adiabatic IP was assumed to be 10.2 eV. The Cl loss from the ethylchloride dimer ion is associated with a reverse activation energy of about 0.32 eV.  相似文献   

2.
A rigorous analysis of the kinetic method is carried out using Rice-Ramsperger-Kassel-Marcus (RRKM) theory of microcanonical statistical unimolecular dissociation rates. The model employs a kinetics treatment appropriate for metastable ion dissociation. Proton-bound alkoxide dimer anions are used as model systems, with realistic vibrational and rotational parameters calculated by ab initio methods for the cluster ion and transition states leading to the competitive dissociation channels. The numerical simulations show that the kinetic method plots of ln(I2/I1) versus AAH are nearly linear but can exhibit significant curvature. The apparent entropy obtained in the extended kinetic method is not approximately equal to the thermodynamic entropy difference for dissociation, AAS(T), or for activation, deltadeltaS++(T), either at the effective temperature or at any fixed equilibrium temperature. Instead, the apparent entropy term can be related to the ratio of the microcanonical sum of states of the dissociation transition states for the kinetically selected internal energy of the dissociating ions.  相似文献   

3.
《Chemical physics》1987,115(1):129-142
Laser-induced dissociation of phenetole ions has been carried out. The ions have been prepared in a well-defined excited state by resonance-enhanced two-photon, two-color ionization (R2PI/2C). Appearance energies of 2.431 and 2.82 eV have been determined for the first dissociation pathways leading to C6H6O+ and C5H6+ ionic fragment. The dissociation spectrum as well as detailed dissociation rate constants versus internal energy have been obtained. The dissociation rates are compared with those expected from RRKM theory. A complex reaction scheme has been assumed in order to explain the observed discrepancy.  相似文献   

4.
The anharmonic and harmonic dissociation rate constants of alkylperoxy (RO2) in different pathways, as well as those for the reactions of the n‐propyl peroxy radical, were calculated using the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. When the temperature/total energy increased, the rate constants of the different pathways varied independently, causing changes in the dominating/leading products. Anharmonic rate constants were larger than harmonic rate constants, and their difference increased with increasing temperature/energy. Therefore, the anharmonic effect cannot be neglected. The rate‐determining steps of CH3CH2CH2OO dissociation are discussed. Then the anharmonic effect was found clearly for CH3CH2CH2OO dissociation, especially for the hydroperoxyalkyl radical (QOOH) dissociation. At low temperature, the rate constants were similar to those found from experiment, which indicated the RRKM theory was suitable for calculating the dissociation rates of RO2 species.  相似文献   

5.
Translational to vibrational (T-->V) energy conversion in the course of inelastic collisions of n-butylbenzene molecular ions with thiolate self-assembled monolayer (SAM) gold surfaces is studied to better understand internal energy uptake by the hyperthermal projectile ions. The projectile ion is selected by a mass spectrometer of BE configuration and product ions are analyzed using a quadrupole mass analyzer after kinetic energy selection with an electric sector. The branching ratio for formation of the fragment ions m/z 91 and m/z 92, measured over a range of collision energies, is used to estimate the average internal energy with the aid of calculations based on unimolecular dissociation kinetics [Rice-Ramsperger-Kassel-Marcus (RRKM) theory]. The measured T-->V conversion efficiencies (the fraction of the laboratory kinetic energy converted into internal energy) are 11 approximately 12% for dodecanethiolate SAM (H-SAM) and 19 approximately 20% for 2-perfluorooctylethanethiolate SAM (F-SAM), respectively, over ranges of a few 10s of eV. The values are similar to those reported earlier for other thermometer molecules undergoing surface collisions. Chemical sputtering leading to ionization of the surface is a prominent feature of the surface-induced dissociation (SID) spectra of n-butylbenzene acquired using the H-SAM surface but not the F-SAM surface because of the lower ionization energy of the former.  相似文献   

6.
Metastable uni-cluster dissociation for several hydrogen-bonded and van der Waals cluster ions are observed via resonance-enhanced two-photon ionization reflectron time-of-flight (TOF) mass spectrometry. All of the cluster ions studied show evaporation of a single molecule from the respective parent cluster ions as dominant metastable decay processes. Furthermore, the averaged metastable evaporation rate constants (k evap) of these cluster ions in a fixed time domain of 0.2–50 µs are obtained by analyzing the relative intensity of metastable ion peaks due to evaporation in the acceleration and the field-free drift regions of the TOF mass spectrometer. An intensity anomaly in some of the observed metastable ion peaks, indicative of magic number stability of the cluster ion, is also presented.  相似文献   

7.
In the present study, fast and metastable dissociations of a number of adenine-thymine binary-base oligonucleotides under the conditions of UV matrix-assisted laser desorption/ionization mass spectrometry were investigated. 2-Aminobenzoic acid/ammonium fluoride (ABA/NH4F) matrix system was used. The spectra obtained under metastable and fast dissociation conditions exhibit distinctive dissociation products. From the post-source-decay analysis, all oligonucleotides underwent predominantly metastable dissociations at the 3' C-O linkages to form [a(n)-B]+ and w(n)+ complimentary ion series. Based on the present results, the so-called "[wn+80]+" ions were postulated to be the complimentary [Z(8-n)AH]+ ions rather than the expected phosphate rearrangement products. In addition, these oligonucleotides were found to generate fast dissociation products of b(n)+, d(N)+, w(N)+ and y(N)+ ions through backbone cleavages at 5' C-O, 5' O-P, 3' C-O and 3' P-O linkages, respectively. Product ion series formed under PSD conditions were not observed. The implications of this mutually exclusive occurrence of the two sets of fragment ions under fast and metastable conditions using ABA/NH4F matrix would be discussed. A model of ion activation under UV-MALDI conditions was also proposed.  相似文献   

8.
A multi-particle ion trajectory simulation program ITSIM 6.0 is described, which is capable of ion trajectory simulations for electrode configurations with arbitrary geometries. The electrode structures are input from a 3D drawing program AutoCAD and the electric field is calculated using a 3D field solver COMSOL. The program CreatePot acts as interface between the field solver and ITSIM 6.0. It converts the calculated electric field into a field array file readable by ITSIM 6.0 and ion trajectories are calculated by solving Newton's equation using Runge-Kutta integration methods. The accuracy of the field calculation is discussed for the ideal quadrupole ion trap in terms of applied mesh density. Electric fields of several different types of devices with 3D geometry are simulated, including ion transport through an ion optical system as a function of pressure. Ion spatial distributions, including the storage of positively charged ions only and simultaneous storage of positively/negatively charged ions in commercial linear ion traps with various geometries, are investigated using different trapping modes. Inelastic collisions and collision induced dissociation modeled using RRKM theory are studied, with emphasis on the fragmentation of n-butylbenzene inside an ideal quadrupole ion trap. The mass spectrum of 1,3-dichlorobenzene is simulated for the rectilinear ion trap device and good agreement is observed between the simulated and the experimental mass spectra. Collisional cooling using helium at different pressures is found to affect mass resolution in the rectilinear ion trap.  相似文献   

9.
A systematic method to automatically estimate the vibrational frequency sets of linear peptide and protein ions with any amino acid sequence, which is needed in Rice-Ramsperger-Kassel-Marcus (RRKM) calculations for dissociation of these ions, has been developed. The method starts from the frequencies of free amino acids calculated quantum chemically at the DFT/B3LYP/6-31G** level. Some of these were systematically eliminated to get fictitious sets of frequencies for each amino acid at the C-terminus, N-terminus, and inside the chain. By collecting these sets as needed for a specified amino acid sequence and adding vibrations appearing upon peptide bond formation and protonation, a complete set of vibrational frequencies was obtained. Other conditions for RRKM calculations have also been systematically specified. RRKM calculations performed under various conditions have shown that the present method can be useful for an order of magnitude estimation of a statistical rate constant even at low internal energy region. The fact that arbitrariness involved in constructing an entire frequency set simply through spectral correlation can be avoided, and that any protein ion can be handled systematically and rapidly once its sequence and the number of protons attached are specified, are the main advantages of the present method.  相似文献   

10.
The electron impact ionization mass spectra of o-, m- and p-bis(1,4-dithiafulven-6-yl)benzenes were studied by means of accurate mass measurements, metastable analysis and collision-induced dissociation. Differences observed in the spectra of the ortho isomers are due to a cyclization reaction leading to molecular ions with the same structure as those generated from certain cyclic compounds, as confirmed by comparison of linked scans at constant B/E of metastable and collisionally activated molecular ions. Parallels of this cyclization of molecular ions with their electrochemical or acid-induced isomerization are also discussed.  相似文献   

11.
《Chemical physics letters》1987,140(5):531-536
Trifluoromethoxy radical formation (by O-atom addition to trifluoromethyl) and dissociation (by F-atom elimination) are studied by ab initio molecular-orbital theory. The activation enthalpy (298 K) for F-atom elimination is 35.3 kcal mol−1 at the UMP4SDQ/6-31 G1//UHF/6-31 G1+ΔZPE+Δ(H-E0 level. The implication of calculated RRKM dissociation rate constants is discussed.  相似文献   

12.
The cation-radical of 2-hydroxyoxol-2-ene (1(+*)) represents the first lactone enol ion whose structure and gas-phase ion chemistry have been studied by experiment and theory. Ion 1(+*) was generated by the McLafferty rearrangement in ionized 2-acetylbutane-4-lactone and characterized by accurate mass measurements, isotope labeling, metastable ion and collisionally activated dissociation (CAD) spectra. Metastable 1(+*) undergoes competitive losses of H-4 and CO that show interesting deuterium and (13)C isotope effects. The elimination of CO from metastable 1(+*) shows a bimodal distribution of kinetic energy release and produces (*)CH(2)CH(2)CHdbond;OH(+) (14(+*)) and CH(3)CHdbond;CHOH(+*) (15(+*)) in ratios which are subject to deuterium isotope effects. Ab initio calculations at the G2(MP2) level of theory show that 1(+*) is 105 kJ mol(-1) more stable than its oxo form, [butane-4-lactone](+*)(2(+*)). The elimination of CO from 1(+*) involves multiple isomerizations by hydrogen migrations and proceeds through ion-molecule complexes of CO with 14(+*) and 15(+*). In addition, CO is calculated to catalyze an exothermic isomerization 14(+*) --> 15(+*) in the ion-molecule complexes. Multiple consecutive hydrogen migrations in metastable 1(+*), as modeled by RRKM calculations on the G2(MP2) potential energy surface, explain the unusual deuterium kinetic isotope effects on the CO elimination.  相似文献   

13.
Ion activation methods for tandem mass spectrometry   总被引:7,自引:0,他引:7  
This tutorial presents the most common ion activation techniques employed in tandem mass spectrometry. In-source fragmentation and metastable ion decompositions, as well as the general theory of unimolecular dissociations of ions, are initially discussed. This is followed by tandem mass spectrometry, which implies that the activation of ions is distinct from the ionization step, and that the precursor and product ions are both characterized independently by their mass/charge ratios. In collision-induced dissociation (CID), activation of the selected ions occurs by collision(s) with neutral gas molecules in a collision cell. This experiment can be done at high (keV) collision energies, using tandem sector and time-of-flight instruments, or at low (eV range) energies, in tandem quadrupole and ion trapping instruments. It can be performed using either single or multiple collisions with a selected gas and each of these factors influences the distribution of internal energy that the activated ion will possess. While CID remains the most common ion activation technique employed in analytical laboratories today, several new methods have become increasingly useful for specific applications. More recent techniques are examined and their differences, advantages and disadvantages are described in comparison with CID. Collisional activation upon impact of precursor ions on solid surfaces, surface-induced dissociation (SID), is gaining importance as an alternative to gas targets and has been implemented in several different types of mass spectrometers. Furthermore, unique fragmentation mechanisms of multiply-charged species can be studied by electron-capture dissociation (ECD). The ECD technique has been recognized as an efficient means to study non-covalent interactions and to gain sequence information in proteomics applications. Trapping instruments, such as quadrupole ion traps and Fourier transform ion cyclotron resonance instruments, are particularly useful for the photoactivation of ions, specifically for fragmentation of precursor ions by infrared multiphoton dissociation (IRMPD). IRMPD is a non-selective activation method and usually yields rich fragmentation spectra. Lastly, blackbody infrared radiative dissociation is presented with a focus on determining activation energies and other important parameters for the characterization of fragmentation pathways. The individual methods are presented so as to facilitate the understanding of each mechanism of activation and their particular advantages and representative applications.  相似文献   

14.
Extensive backbone fragmentation resulting in a‐, b‐, c‐, x‐, y‐ and z‐type ions is observed of singly and doubly charged peptide ions through their interaction with a high kinetic energy beam of argon or helium metastable atoms in a modified quadrupole ion trap mass spectrometer. The ability to determine phosphorylation‐sites confirms the observation with previous reports and we report the new ability to distinguish between leucine and isoleucine residues and the ability to cleave two covalent bonds of the proline ring resulting in a‐, b‐, x‐, y‐, z‐ and w‐type ions. The fragmentation spectra indicate that fragmentation occurs through nonergodic radical ion chemistry akin to electron capture dissociation (ECD), electron transfer dissociation (ETD) and electron ionization dissociation mechanisms. However, metastable atom‐activated dissociation mass spectrometry demonstrates three apparent benefits to ECD and ETD: (1) the ability to fragment singly charged precursor ions, (2) the ability to fragment negatively charged ions and (3) the ability to cleave the proline ring that requires the cleavage of two covalent bonds. Helium metastable atoms generated more fragment ions than argon metastable atoms for both substance P and bradykinin regardless of the precursor ion charge state. Reaction times less than 250 ms and efficiencies approaching 5% are compatible with on‐line fragmentation, as would be desirable for bottom‐up proteomics applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The internal energy deposited in both on- and off-resonance collisional activation in Fourier transform ion cyclotron resonance mass spectrometry is measured with ion nanocalorimetry and is used to obtain information about the dissociation energy and entropy of a protonated peptide. Activation of Na+(H2O)30 results in sequential loss of water molecules, and the internal energy of the activated ion can be obtained from the abundances of the product ions. Information about internal energy deposition in on-resonance collisional activation of protonated peptides is inferred from dissociation data obtained under identical conditions for hydrated ions that have similar m/z and degrees-of-freedom. From experimental internal energy deposition curves and Rice-Ramsperger-Kassel-Marcus (RRKM) theory, dissociation data as a function of collision energy for protonated leucine enkephalin, which has a comparable m/z and degrees-of-freedom as Na+(H2O)30, are modeled. The threshold dissociation energies and entropies are correlated for data acquired at a single time point, resulting in a relatively wide range of threshold dissociation energies (1.1 to 1.7 eV) that can fit these data. However, this range of values could be significantly reduced by fitting data acquired at different dissociation times. By measuring the internal energy of an activated ion, the number of fitting parameters necessary to obtain information about the dissociation parameters by modeling these data is reduced and could result in improved accuracy for such methods.  相似文献   

16.
用从头算法研究直链小碳簇C7,C8,C9和C10的解离通道及其动力学.在MP2/6-31G*精度上优化了这些碳簇及其过渡态的结构,并对它们进行了振动分析.计算了各解离通道的活化能,并根据RRKM理论估算了各个通道的微正则解离速率,计算结果说明它们的主要解离通道为裂解C3碎片的方式,这与实验所观察到的小碳簇的解离方式完全一致.  相似文献   

17.
《Chemical physics》1986,108(1):105-114
Previously reported simulations of uniform classical chain molecules in one dimension are here extended to consider the effect of non-uniformities in the chains on the dissociation and vibrational relaxation rates. Non-uniformities are introduced by increasing the mass of the central atom and/or by making all bonds except one at the end twice as strong. The validity of the RRKM theory is found to be adversely affected by non-uniformities in the chain.  相似文献   

18.
19.
In this work the appearance potentials for the metastable decay channel of a series of van der Waals dimer ions are presented. Ionization and metastable dissociation is achieved by resonance-enhanced two-photon absorption in a linear reflection time-of-flight mass spectrometer. From the appearance potentials the binding energy of the neutral dimers is obtained and from the additionally measured ionization potentials binding energies of the dimer cations are achieved. The contribution of charge transfer resonance interaction to the binding in cluster ions is evaluated by investigation of several homo-and heterodimers of aromatic components and the heterodimer benzene/cyclohexane as an example for a dimer consisting of an aromatic and a nonaromatic component.  相似文献   

20.
The bicoordinated dihydroxyphosphenium ion P(OH)2+ (1+) was generated specifically by charge-exchange dissociative ionization of triethylphosphite and its connectivity was confirmed by collision induced dissociation and neutralization-reionization mass spectra. The major dissociation of 1+ forming PO+ ions at m/z 47 involved another isomer, O=P-OH2+ (2+), for which the optimized geometry showed a long P-OH2 bond. Dissociative 70-eV electron ionization of diethyl phosphite produced mostly 1+ together with a less stable isomer, HP(O)OH+ (3+). Ion 2+ is possibly co-formed with 1+ upon dissociative 70-eV electron ionization of methylphosphonic acid. Neutralization-reionization of 1+ confirmed that P(OH)2* (1) was a stable species. Dissociations of neutral 1, as identified by variable-time measurements, involved rate-determining isomerization to 2 followed by fast loss of water. A competitive loss of H occurs from long-lived excited states of 1 produced by vertical electron transfer. The A and B states undergo rate-determining internal conversion to vibrationally highly excited ground state that loses an H atom via two competing mechanisms. The first of these is the direct cleavage of one of the O-H bonds in 1. The other is an isomerization to 3 followed by cleavage of the P-H bond to form O=P-OH as a stable product. The relative, dissociation, and transition state energies for the ions and neutrals were studied by ab initio and density functional theory calculations up to the QCISD(T)/6-311+G(3df,2p) and CCSD(T)/aug-cc-pVTZ levels of theory. RRKM calculations were performed to investigate unimolecular dissociation kinetics of 1. Excited state geometries and energies were investigated by a combination of configuration interaction singles and time-dependent density functional theory calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号