首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a class of optimal control problems subject to equality terminal state constraints and continuous state and control inequality constraints. By using the control parametrization technique and a time scaling transformation, the constrained optimal control problem is approximated by a sequence of optimal parameter selection problems with equality terminal state constraints and continuous state inequality constraints. Each of these constrained optimal parameter selection problems can be regarded as an optimization problem subject to equality constraints and continuous inequality constraints. On this basis, an exact penalty function method is used to devise a computational method to solve these optimization problems with equality constraints and continuous inequality constraints. The main idea is to augment the exact penalty function constructed from the equality constraints and continuous inequality constraints to the objective function, forming a new one. This gives rise to a sequence of unconstrained optimization problems. It is shown that, for sufficiently large penalty parameter value, any local minimizer of the unconstrained optimization problem is a local minimizer of the optimization problem with equality constraints and continuous inequality constraints. The convergent properties of the optimal parameter selection problems with equality constraints and continuous inequality constraints to the original optimal control problem are also discussed. For illustration, three examples are solved showing the effectiveness and applicability of the approach proposed.  相似文献   

2.
In this paper,we consider an optimal control problem with state constraints,where the control system is described by a mean-field forward-backward stochastic differential equation(MFFBSDE,for short)and the admissible control is mean-field type.Making full use of the backward stochastic differential equation theory,we transform the original control system into an equivalent backward form,i.e.,the equations in the control system are all backward.In addition,Ekeland’s variational principle helps us deal with the state constraints so that we get a stochastic maximum principle which characterizes the necessary condition of the optimal control.We also study a stochastic linear quadratic control problem with state constraints.  相似文献   

3.
We solve by finite difference method an optimal control problem of a system governed by a linear elliptic equation with pointwise control constraints and non-local state constraints. A discrete optimal control problem is approximated by a minimization problem with penalized state equation. We derive the error estimates for the distance between the exact and regularized solutions. We also prove the rate of convergence of block Gauss–Seidel iterative solution method for the penalized problem. We present and analyze the results of the numerical experiments.  相似文献   

4.
This paper is concerned with the optimal control of the sterilization of prepackaged food. The investigated system is constructed as an optimal control problem with free final horizon and phase constraints. Pontryagin’s maximum principle, the necessary optimality condition for the system, is studied by the Dubovitskii and Milyutin functional analytical approach. The derived necessary condition is presented for the problem with both the control constraints and the state constraints.  相似文献   

5.
In this paper, we consider a distributed boundary control problem governed by an elliptic partial differential equation with state constraints and a minimax objective function. The continuous optimal control problem, discretized with the finite element method, is numerically approximated by a family of linear programming problems. Application to an optimal configuration problem is discussed.  相似文献   

6.
We suggest an analytical-numerical method for solving a boundary value optimal control problem with state, integral, and control constraints. The embedding principle underlying the method is based on the general solution of a Fredholm integral equation of the first kind and its analytic representation; the method permits one to reduce the boundary value optimal control problem with constraints to an optimization problem with free right end of the trajectory.  相似文献   

7.
In this paper, we consider an optimal control problem in which the control takes values from a discrete set and the state and control are subject to continuous inequality constraints. By introducing auxiliary controls and applying a time-scaling transformation, we transform this optimal control problem into an equivalent problem subject to additional linear and quadratic constraints. The feasible region defined by these additional constraints is disconnected, and thus standard optimization methods struggle to handle these constraints. We introduce a novel exact penalty function to penalize constraint violations, and then append this penalty function to the objective. This leads to an approximate optimal control problem that can be solved using standard software packages such as MISER. Convergence results show that when the penalty parameter is sufficiently large, any local solution of the approximate problem is also a local solution of the original problem. We conclude the paper with some numerical results for two difficult train control problems.  相似文献   

8.
The landing of a passenger aircraft in the presence of windshear is a threat to aviation safety. The present paper is concerned with the abort landing of an aircraft in such a serious situation. Mathematically, the flight maneuver can be described by a minimax optimal control problem. By transforming this minimax problem into an optimal control problem of standard form, a state constraint has to be taken into account which is of order three. Moreover, two additional constraints, a first-order state constraint and a control variable constraint, are imposed upon the model. Since the only control variable appears linearly, the Hamiltonian is not regular. Thus, well-known existence theorems about the occurrence of boundary arcs and boundary points cannot be applied. Numerically, this optimal control problem is solved by means of the multiple shooting method in connection with an appropriate homotopy strategy. The solution obtained here satisfies all the sharp necessary conditions including those depending on the sign of certain multipliers. The trajectory consists of bang-bang and singular subarcs, as well as boundary subarcs induced by the two state constraints. The occurrence of boundary arcs is known to be impossible for regular Hamiltonians and odd-ordered state constraints if the order exceeds two. Additionally, a boundary point also occurs where the third-order state constraint is active. Such a situation is known to be the only possibility for odd-ordered state constraints to be active if the order exceeds two and if the Hamiltonian is regular. Because of the complexity of the optimal control, this single problem combines many of the features that make this kind of optimal control problems extremely hard to solve. Moreover, the problem contains nonsmooth data arising from the approximations of the aerodynamic forces and the distribution of the wind velocity components. Therefore, the paper can serve as some sort of user's guide to solve inequality constrained real-life optimal control problems by multiple shooting.An extended abstract of this paper was presented at the 8th IFAC Workshop on Control Applications of Nonlinear Programming and Optimization, Paris, France, 1989 (see Ref. 1).This paper is dedicated to Professor Hans J. Stetter on the occasion of his 60th birthday.  相似文献   

9.
Optimal control problem for the exploitation of oil is investigated. The optimal control problem under consideration in this paper is governed by weak coupled parabolic PDEs and involves with pointwise state and control constraints. The properties of solution of the state equations and the continuous dependence of state functions on control functions are investigated in a suitable function space; existence of optimal solution of the optimal control problem is also proved.  相似文献   

10.
In this paper, an optimal control problem for the stationary Navier-Stokes equations in the presence of state constraints is investigated. Existence of optimal solutions is proved and first order necessary conditions are derived. The regularity of the adjoint state and the state constraint multiplier is also studied. Lipschitz stability of the optimal control, state and adjoint variables with respect to perturbations is proved and a second order sufficient optimality condition for the case of pointwise state constraints is stated.  相似文献   

11.
In this paper, the optimal control problem is governed by weak coupled parabolic PDEs and involves pointwise state and control constraints. We use measure theory method for solving this problem. In order to use the weak solution of problem, first problem has been transformed into measure form. This problem is reduced to a linear programming problem. Then we obtain an optimal measure which is approximated by a finite combination of atomic measures. We find piecewise-constant optimal control functions which are an approximate control for the original optimal control problem.  相似文献   

12.
Consider the class of linear-quadratic (LQ) optimal control problems with continuous linear state constraints, that is, constraints imposed on every instant of the time horizon. This class of problems is known to be difficult to solve numerically. In this paper, a computational method based on a semi-infinite programming approach is given. The LQ optimal control problem is formulated as a positive-quadratic infinite programming problem. This can be done by considering the control as the decision variable, while taking the state as a function of the control. After parametrizing the decision variable, an approximate quadratic semi-infinite programming problem is obtained. It is shown that, as we refine the parametrization, the solution sequence of the approximate problems converges to the solution of the infinite programming problem (hence, to the solution of the original optimal control problem). Numerically, the semi-infinite programming problems obtained above can be solved efficiently using an algorithm based on a dual parametrization method.  相似文献   

13.
In this work, an optimal control problem with state constraints of equality type is considered. Novelty of the problem formulation is justified. Under various regularity assumptions imposed on the optimal trajectory, a non-degenerate Pontryagin Maximum Principle is proven. As a consequence of the maximum principle, the Euler–Lagrange and Legendre conditions for a variational problem with equality and inequality state constraints are obtained. As an application, the equation of the geodesic curve for a complex domain is derived. In control theory, the Maximum Principle suggests the global maximum condition, also known as the Weierstrass–Pontryagin maximum condition, due to which the optimal control function, at each instant of time, turns out to be a solution to a global finite-dimensional optimization problem.  相似文献   

14.
This paper considers optimal control problems involving the minimization of a functional subject to differential constraints, terminal constraints, and a state inequality constraint. The state inequality constraint is of a special type, namely, it is linear in some or all of the components of the state vector.A transformation technique is introduced, by means of which the inequality-constrained problem is converted into an equality-constrained problem involving differential constraints, terminal constraints, and a control equality constraint. The transformation technique takes advantage of the partial linearity of the state inequality constraint so as to yield a transformed problem characterized by a new state vector of minimal size. This concept is important computationally, in that the computer time per iteration increases with the square of the dimension of the state vector.In order to illustrate the advantages of the new transformation technique, several numerical examples are solved by means of the sequential gradient-restoration algorithm for optimal control problems involving nondifferential constraints. The examples show the substantial savings in computer time for convergence, which are associated with the new transformation technique.This research was supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-76-3075, and by the National Science Foundation, Grant No. MCS-76-21657.  相似文献   

15.
The problem of optimal response [1, 2] with nonsmooth (generally speaking, nonfunctional) constraints imposed on the state variables is considered. This problem is used to illustrate the method of proving the necessary conditions of optimality in the problems of optimal control with phase constraints, based on constructive approximation of the initial problem with constraints by a sequence of problems of optimal control with constraint-free state variables. The variational analysis of the approximating problems is carried out by means of a purely algebraic method involving the formulas for the incremental growth of a functional [3, 4] and the theorems of separability of convex sets is not used.Using a passage to the limit, the convergence of the approximating problems to the initial problem with constraints is proved, and for general assumptions the necessary conditions of optimality resembling the Pontriagin maximum principle [1] are derived for the generalized solutions of the initial problem. The conditions of transversality are expressed, in the case of nonsmooth (nonfunctional) constraints by a novel concept of a cone conjugate to an arbitrary closed set of a finite-dimensional space. The concept generalizes the usual notions of the normal and the normal cone for the cases of smooth and convex manifolds.  相似文献   

16.
The method presented here is an extension of the multiple shooting algorithm in order to handle multipoint boundary-value problems and problems of optimal control in the special situation of singular controls or constraints on the state variables. This generalization allows a direct treatment of (nonlinear) conditions at switching points. As an example a model of optimal heating and cooling by solar energy is considered. The model is given in the form of an optimal control problem with three control functions appearing linearly and a first order constraint on the state variables. Numerical solutions of this problem by multiple shooting techniques are presented.  相似文献   

17.
We consider an elliptic optimal control problem with control and pointwise state constraints. The cost functional is approximated by a sequence of functionals which are obtained by discretizing the state equation with the help of linear finite elements and enforcing the state constraints in the nodes of the triangulation. The control variable is not discretized. A general error bound for control and state is obtained which forms the starting point for optimal error estimates in both in two and three space dimensions. For the numerical implementation of the discrete concept fix-point iterations or generalized Newton methods are proposed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper is the continuation of the paper ``Dirichlet boundary control of semilinear parabolic equations. Part 1: Problems with no state constraints.' It is concerned with an optimal control problem with distributed and Dirichlet boundary controls for semilinear parabolic equations, in the presence of pointwise state constraints. We first obtain approximate optimality conditions for problems in which state constraints are penalized on subdomains. Next by using a decomposition theorem for some additive measures (based on the Stone—Cech compactification), we pass to the limit and recover Pontryagin's principles for the original problem. Accepted 21 July 2001. Online publication 21 December 2001.  相似文献   

19.
A nonlinear optimal impulsive control problem with trajectories of bounded variation subject to intermediate state constraints at a finite number on nonfixed instants of time is considered. Features of this problem are discussed from the viewpoint of the extension of the classical optimal control problem with the corresponding state constraints. A necessary optimality condition is formulated in the form of a smooth maximum principle; thorough comments are given, a short proof is presented, and examples are discussed.  相似文献   

20.
Bi-level optimal control problems are presented as an extension to classical optimal control problems. Hereby, additional constraints for the primary problem are considered, which depend on the optimal solution of a secondary optimal control problem. A demanding problem is the numerical complexity, since at any point in time the solution of the optimal control problem as well as a complete solution of the secondary problem have to be determined. Hence we deal with two dependent variables in time. The numerical solution of the bi-level problem is illustrated by an application of a container crane. Jerk and energy optimal trajectories with free final time are calculated under the terminal condition that the crane system comes to be at rest at a predefined location. In enlargement additional constraints are investigated to ensure that the crane system can be brought to a rest position by a safety stop at a free but admissible location in minimal time from any state of the trajectory. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号