首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering a recently proposed proximal point method for equilibrium problems, we construct an augmented Lagrangian method for solving the same problem in reflexive Banach spaces with cone constraints generating a strongly convergent sequence to a certain solution of the problem. This is an inexact hybrid method meaning that at a certain iterate, a solution of an unconstrained equilibrium problem is found, allowing a proper error bound, followed by a Bregman projection of the initial iterate onto the intersection of two appropriate halfspaces. Assuming a set of reasonable hypotheses, we provide a full convergence analysis.  相似文献   

2.
A numerical method for the solution of the one-phase Stefan problem is discussed. By discretizing the time variable the Stefan problem is reduced to a sequence of free boundary value problems for ordinary differential equations which are solved by conversion to initial value problems. The numerical solution is shown to converge to the solution of the Stefan problem with decreasing time increments. Sample calculations indicate that the method is stable provided the proper algorithm is chosen for integrating the initial value problems.  相似文献   

3.
Our aim in this paper is to study an infeasible interior proximal method for solving equilibrium problems with polyhedral constrains in a quasiconvex setting. Under mild assumptions, we show that the sequence generated by our algorithm is well defined and it converges to a solution of the problem when regularization parameters converge to zero.  相似文献   

4.
The purpose of this paper is the presentation of a new extragradient algorithm in 2‐uniformly convex real Banach spaces. We prove that the sequences generated by this algorithm converge strongly to a point in the solution set of split feasibility problem, which is also a common element of the solution set of a generalized equilibrium problem and fixed points of of two relatively nonexpansive mappings. We give a numerical example to investigate the behavior of the sequences generated by our algorithm.  相似文献   

5.
In this paper, we devote to find the solution of the following quadratic minimization problem
$\min_{x\in \Omega}\|x\|^2,$
where Ω is the intersection set of the solution set of some equilibrium problem, the fixed points set of a nonexpansive mapping and the solution set of some variational inequality. In order to solve the above minimization problem, we first construct an implicit algorithm by using the projection method. Further, we suggest an explicit algorithm by discretizing this implicit algorithm. Finally, we prove that the proposed implicit and explicit algorithms converge strongly to a solution of the above minimization problem.
  相似文献   

6.
陈守信  韩小森 《数学季刊》2006,21(3):385-396
In this paper, we study the asymptotic behavior of globally smooth solutions of initial boundary value problem for 1-d quasineutral drift-diffusion model for semiconductors. We prove that the smooth solutions(close to equilibrium)of the problem converge to the unique stationary solution.  相似文献   

7.
We develop an inexact proximal point algorithm for solving equilibrium problems in Banach spaces which consists of two principal steps and admits an interesting geometric interpretation. At a certain iterate, first we solve an inexact regularized equilibrium problem with a flexible error criterion to obtain an axillary point. Using this axillary point and the inexact solution of the previous iterate, we construct two appropriate hyperplanes which separate the current iterate from the solution set of the given problem. Then the next iterate is defined as the Bregman projection of the initial point onto the intersection of two halfspaces obtained from the two constructed hyperplanes containing the solution set of the original problem. Assuming standard hypotheses, we present a convergence analysis for our algorithm, establishing that the generated sequence strongly and globally converges to a solution of the problem which is the closest one to the starting point of the algorithm.  相似文献   

8.
We propose a modified stochastic ruler method for finding a global optimal solution to a discrete optimization problem in which the objective function cannot be evaluated analytically but has to be estimated or measured. Our method generates a Markov chain sequence taking values in the feasible set of the underlying discrete optimization problem; it uses the number of visits this sequence makes to the different states to estimate the optimal solution. We show that our method is guaranteed to converge almost surely (a.s.) to the set of global optimal solutions. Then, we show how our method can be used for solving discrete optimization problems where the objective function values are estimated using either transient or steady-state simulation. Finally, we provide some numerical results to check the validity of our method and compare its performance with that of the original stochastic ruler method.  相似文献   

9.
The aim of this article is to develop a new block monotone iterative method for the numerical solutions of a nonlinear elliptic boundary value problem. The boundary value problem is discretized into a system of nonlinear algebraic equations, and a block monotone iterative method is established for the system using an upper solution or a lower solution as the initial iteration. The sequence of iterations can be computed in a parallel fashion and converge monotonically to a maximal solution or a minimal solution of the system. Three theoretical comparison results are given for the sequences from the proposed method and the block Jacobi monotone iterative method. The comparison results show that the sequence from the proposed method converges faster than the corresponding sequence given by the block Jacobi monotone iterative method. A simple and easily verified condition is obtained to guarantee a geometric convergence of the block monotone iterations. The numerical results demonstrate advantages of this new approach. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

10.
The purpose of this paper is to investigate the problem of finding a common element of the set of solutions of a generalized equilibrium problem (for short, GEP) and the set of fixed points of a nonexpansive mapping in the setting of Hilbert spaces. By using well-known Fan-KKM lemma, we derive the existence and uniqueness of a solution of the auxiliary problem for GEP. On account of this result and Nadler’s theorem, we propose an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of GEP and the set of fixed points of a nonexpansive mapping. Furthermore, it is proven that the sequences generated by this iterative scheme converge strongly to a common element of the set of solutions of GEP and the set of fixed points of a nonexpansive mapping.  相似文献   

11.
In this paper, we introduce an iterative method to approximate a common solution of a split equilibrium problem, a variational inequality problem and a fixed point problem for a nonexpansive mapping in real Hilbert spaces. We prove that the sequences generated by the iterative scheme converge strongly to a common solution of the split equilibrium problem, the variational inequality problem and the fixed point problem for a nonexpansive mapping. The results presented in this paper extend and generalize many previously known results in this research area.  相似文献   

12.
In this paper we consider several concepts of approximate minima of a set in normed vector spaces and we provide some results concerning the stability of these minima under perturbation of the underlying set with a sequence of sets converging in the sense of Painlevé-Kuratowski to the initial set. Then, we introduce the concept of approximate solution for equilibrium problem governed by set-valued maps and we study the stability of these solutions. The particular case of linear continuous operators is considered as well.  相似文献   

13.
In this paper the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed. It is shown that the symmetric (EiCP) is equivalent to finding an equilibrium solution of a differentiable optimization problem in a compact set. A necessary and sufficient condition for solvability is obtained which, when verified, gives a convenient starting point for any gradient-ascent local optimization method to converge to a solution of the (EiCP). It is further shown that similar results apply to the Symmetric Generalized Eigenvalue Complementarity Problem (GEiCP). Computational tests show that these reformulations improve the speed and robustness of the solution methods.

  相似文献   


14.
In this paper we reformulate the generalized Nash equilibrium problem (GNEP) as a nonsmooth Nash equilibrium problem by means of a partial penalization of the difficult coupling constraints. We then propose a suitable method for the solution of the penalized problem and we study classes of GNEPs for which the penalty approach is guaranteed to converge to a solution. In particular, we are able to prove convergence for an interesting class of GNEPs for which convergence results were previously unknown.  相似文献   

15.
A neural network is proposed for solving a convex quadratic bilevel programming problem. Based on Lyapunov and LaSalle theories, we prove strictly an important theoretical result that, for an arbitrary initial point, the trajectory of the proposed network does converge to the equilibrium, which corresponds to the optimal solution of a convex quadratic bilevel programming problem. Numerical simulation results show that the proposed neural network is feasible and efficient for a convex quadratic bilevel programming problem.  相似文献   

16.
This paper presents a framework of iterative methods for finding a common solution to an equilibrium problem and a countable number of fixed point problems defined in a Hilbert space. A general strong convergence theorem is established under mild conditions. Two hybrid methods are derived from the proposed framework in coupling the fixed point iterations with the iterations of the proximal point method or the extragradient method, which are well-known methods for solving equilibrium problems. The strategy is to obtain the strong convergence from the weak convergence of the iterates without additional assumptions on the problem data. To achieve this aim, the solution set of the problem is outer approximated by a sequence of polyhedral subsets.  相似文献   

17.
We study coupled motion of a 1-D closed elastic string immersed in a 2-D Stokes flow, known as the Stokes immersed boundary problem in two dimensions. Using the fundamental solution of the Stokes equation and the Lagrangian coordinate of the string, we write the problem into a contour dynamic formulation, which is a nonlinear nonlocal equation solely keeping track of evolution of the string configuration. We prove existence and uniqueness of local-in-time solution starting from an arbitrary initial configuration that is an H5/2-function in the Lagrangian coordinate satisfying the so-called well-stretched assumption. We also prove that when the initial string configuration is sufficiently close to an equilibrium, which is an evenly parametrized circular configuration, then a global-in-time solution uniquely exists and it will converge to an equilibrium configuration exponentially as t → + ∞. The technique in this paper may also apply to the Stokes immersed boundary problem in three dimensions. © 2018 Wiley Periodicals, Inc.  相似文献   

18.
二阶积分微分方程的广义拟线性化方法   总被引:1,自引:0,他引:1  
运用广义拟线性化方法研究了正规锥上的二阶积分微分方程初值问题,获得了逼近解序列一致且平方收敛的结果.  相似文献   

19.
In this article, we construct a splitting method for nonlinear stochastic equations of Schrödinger type. We approximate the solution of our problem by the sequence of solutions of two types of equations: one without stochastic integral term, but containing the Laplace operator and the other one containing only the stochastic integral term. The two types of equations are connected to each other by their initial values. We prove that the solutions of these equations both converge strongly to the solution of the Schrödinger type equation.  相似文献   

20.
This work focuses on convergence analysis of the projected gradient method for solving constrained convex minimization problems in Hilbert spaces. We show that the sequence of points generated by the method employing the Armijo line search converges weakly to a solution of the considered convex optimization problem. Weak convergence is established by assuming convexity and Gateaux differentiability of the objective function, whose Gateaux derivative is supposed to be uniformly continuous on bounded sets. Furthermore, we propose some modifications in the classical projected gradient method in order to obtain strong convergence. The new variant has the following desirable properties: the sequence of generated points is entirely contained in a ball with diameter equal to the distance between the initial point and the solution set, and the whole sequence converges strongly to the solution of the problem that lies closest to the initial iterate. Convergence analysis of both methods is presented without Lipschitz continuity assumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号