首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtain conditions for the convergence in the spaces L p [0, 1], 1 ≤ p < ∞, of biorthogonal series of the form $$ f = \sum\limits_{n = 0}^\infty {(f,\psi _n )\phi _n } $$ in the system {? n } n≥0 of contractions and translations of a function ?. The proposed conditions are stated with regard to the fact that the functions belong to the space $ \mathfrak{L}^p $ of absolutely bundleconvergent Fourier-Haar series with norm $$ \left\| f \right\|_p^ * = \left| {f,\chi _0 } \right| + \sum\limits_{k = 0}^\infty {2^{k({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p})} } \left( {\sum\limits_{n = 2^k }^{2^{k + 1} - 1} {\left| {f,\chi _n } \right|^p } } \right)^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where (f n ), n = 0, 1, ..., are the Fourier coefficients of a function f ? L p [0, 1] in the Haar system {χ n } n≥0. In particular, we present conditions for the system {? n } n≥0 of contractions and translations of a function ? to be a basis for the spaces L p [0, 1] and $ \mathfrak{L}^p $ .  相似文献   

2.
Two-variable functions f(x, y) from the class L 2 = L 2((a, b) × (c, d); p(x)q(y)) with the weight p(x)q(y) and the norm $$\left\| f \right\| = \sqrt {\int\limits_a^b {\int\limits_c^d {p(x)q(x)f^2 (x,y)dxdy} } }$$ are approximated by an orthonormal system of orthogonal P n (x)Q n (y), n, m = 0, 1, ..., with weights p(x) and q(y). Let $$E_N (f) = \mathop {\inf }\limits_{P_N } \left\| {f - P_N } \right\|$$ denote the best approximation of f ?? L 2 by algebraic polynomials of the form $$\begin{array}{*{20}c} {P_N (x,y) = \sum\limits_{0 < n,m < N} {a_{m,n} x^n y^m ,} } \\ {P_1 (x,y) = const.} \\ \end{array}$$ . Consider a double Fourier series of f ?? L 2 in the polynomials P n (x)Q m (y), n, m = 0, 1, ..., and its ??hyperbolic?? partial sums $$\begin{array}{*{20}c} {S_1 (f;x,y) = c_{0,0} (f)P_o (x)Q_o (y),} \\ {S_N (f;x,y) = \sum\limits_{0 < n,m < N} {c_{n,m} (f)P_n (x)Q_m (y), N = 2,3, \ldots .} } \\ \end{array}$$ A generalized shift operator Fh and a kth-order generalized modulus of continuity ?? k (A, h) of a function f ?? L 2 are used to prove the following sharp estimate for the convergence rate of the approximation: $\begin{gathered} E_N (f) \leqslant (1 - (1 - h)^{2\sqrt N } )^{ - k} \Omega _k (f;h),h \in (0,1), \hfill \\ N = 4,5,...;k = 1,2,... \hfill \\ \end{gathered} $ . Moreover, for every fixed N = 4, 9, 16, ..., the constant on the right-hand side of this inequality is cannot be reduced.  相似文献   

3.
Abstract. Let I be a finite interval, r∈ N and ρ(t)= dist {t, I} , t∈ I . Denote by Δ s + L q the subset of all functions y∈ L q such that the s -difference Δ s τ y(t) is nonnegative on I , $$\forall$$ τ>0 . Further, denote by $$\Delta^s_+W^r_{p,\alpha}$$ , 0≤α<∞ , the classes of functions x on I with the seminorm ||x (r) ρ α ||_ L p ≤ 1 , such that Δ s τ x≥ 0 , τ>0 . For s=0,1,2 , we obtain two-sided estimates of the shape-preserving widths $$d_n (\Delta _ + ^s W_{p,\alpha ,}^r \Delta _ + ^s L_q )L_q : = \mathop {\inf }\limits_{M^n \in \mathcal{M}^n } \mathop {\sup }\limits_{x \in \Delta _ + ^s W_{p,\alpha }^r } \mathop {\inf }\limits_{y \in M^n \cap \Delta ^s + L_q } \left\| {x - y} \right\|L_q$$ where M n is the set of all linear manifolds M n in L q such that dim M n ≤ n , and satisfying $$M^n\cap\Delta^s_+L_q\neq\emptyset$$ .  相似文献   

4.
This paper proves three conjectures on congruences involving central binomial coefficients or Lucas sequences.Let p be an odd prime and let a be a positive integer.It is shown that if p=1(mod 4)or a1then where(—)denotes the Jacobi symbol.This confirms a conjecture of the second author.A conjecture of Tauraso is also confirmed by showing that where the Lucas numbers Lo,L_1,L_2,...are defined by L_0=2,L_1=1 and L_n+1=L_n+L_n-l(n=1,2,3,...).The third theorem states that if p=5 then F_p~a-(p~a/5)mod p~3 can be determined in the following way:which appeared as a conjecture in a paper of Sun and Tauraso in 2010.  相似文献   

5.
We investigate the regular convergence of the m-multiple series (*) $$\sum\limits_{j_1 = 0}^\infty {\sum\limits_{j_2 = 0}^\infty \cdots \sum\limits_{j_m = 0}^\infty {c_{j_1 ,j_2 } , \ldots j_m } }$$ of complex numbers, where m ≥ 2 is a fixed integer. We prove Fubini’s theorem in the discrete setting as follows. If the multiple series (*) converges regularly, then its sum in Pringsheim’s sense can also be computed by successive summation. We introduce and investigate the regular convergence of the m-multiple integral (**) $$\int_0^\infty {\int_0^\infty { \cdots \int_0^\infty {f\left( {t_1 ,t_2 , \ldots ,t_m } \right)dt_1 } } } dt_2 \cdots dt_m ,$$ where f : ?? + m → ? is a locally integrable function in Lebesgue’s sense over the closed nonnegative octant ?? + m := [0,∞) m . Our main result is a generalized version of Fubini’s theorem on successive integration formulated in Theorem 4.1 as follows. If fL loc 1 (?? + m ), the multiple integral (**) converges regularly, and m = p + q, where p and q are positive integers, then the finite limit $$\mathop {\lim }\limits_{v_{_{p + 1} } , \cdots ,v_m \to \infty } \int_{u_1 }^{v_1 } {\int_{u_2 }^{v_2 } { \cdots \int_0^{v_{p + 1} } { \cdots \int_0^{v_m } {f\left( {t_1 ,t_2 , \ldots t_m } \right)dt_1 dt_2 } \cdots dt_m = :J\left( {u_1 ,v_1 ;u_2 v_2 ; \ldots ;u_p ,v_p } \right)} , 0 \leqslant u_k \leqslant v_k < \infty } ,k = 1,2, \ldots p,}$$ exists uniformly in each of its variables, and the finite limit $$\mathop {\lim }\limits_{v_1 ,v_2 \cdots ,v_p \to \infty } J\left( {0,v_1 ;0,v_2 ; \ldots ;0,v_p } \right) = I$$ also exists, where I is the limit of the multiple integral (**) in Pringsheim’s sense. The main results of this paper were announced without proofs in the Comptes Rendus Sci. Paris (see [8] in the References).  相似文献   

6.
In 1965, Lu Yu-Qian discovered that the Poisson kernel of the homogenous domain S m,p,q={Z∈Cm×m, Z1∈Cm×p,Z2 ∈Cq×m|2i1( Z-Z+)-Z1Z1′-Z2′Z20} does not satisfy the Laplace-Beltrami equation associated with the Bergman metric when S m,p,q is not symmetric. However the map T0:Z→Z, Z1→Z1 , Z2→Z2 transforms S m,p,q into a domain S I (m, m + p + q) which can be mapped by the Cayley transformation into the classical domains R I (m, m + p + q). The pull back of the Bergman metric of R I (m, m + p + q) to S m,p,q is a Riemann metric ds 2 which is not a Khler metric and even not a Hermitian metric in general. It is proved that the Laplace-Beltrami operator associated with the metric ds 2 when it acts on the Poisson kernel of S m,p,q equals 0. Consequently, the Cauchy formula of S m,p,q can be obtained from the Poisson formula.  相似文献   

7.
We consider the weighted space W 1 (2) (?,q) of Sobolev type $$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$ and the equation $$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$ Here f ε L 1(?) and 0 ? qL 1 loc (?). We prove the following:
  1. The problems of embedding W 1 (2) (?q) ? L 1(?) and of correct solvability of (1) in L 1(?) are equivalent
  2. an embedding W 1 (2) (?,q) ? L 1(?) exists if and only if $$\exists a > 0:\mathop {\inf }\limits_{x \in R} \int_{x - a}^{x + a} {q(t)dt > 0} $$
  相似文献   

8.
Properties of the integrals $P_{n0} (x) = P_n (x),P_{nk} (x) = \int\limits_{ - 1}^x {P_{n,k - 1} (y)dy} $ of the Legendre polynomials P n (x) on the base interval ?1 ≤ x ≤ 1 are systematically considered. The generating function $(1 - 2xz + z^2 )^{k - 1/2} = Q_k (x,z) + ( - 1)^k (2k - 1)!!\sum\limits_{n = k}^\infty {P_{nk} (x)z^{n + k} } $ is defined; here, Q 0 = 0 and Q k with k > 0 is a polynomial of degree 2k ? 1 in each of the variables x and z. A second-order differential equation is derived, an analogue of Rodrigues’ formula is obtained, and the asymptotic behavior as n → ∞ is determined. It is proved that the representation $P_{nk} (x) = (x^2 - 1)^k f_{nk} (x)$ holds if and only if nk, where f nk is a polynomial divisible by neither x ? 1 nor x + 1. The main result is the sharp bound $|P_{nk} (\cos \theta )| < \frac{{A_k }} {{\nu ^{k + 1/2} }}\sin ^{k - 1/2} \theta ,n \geqslant k.$ Here, $\nu ^2 = \left( {n + \frac{1} {2}} \right)^2 - \left( {k^2 - \frac{1} {4}} \right)\left( {1 - \frac{4} {{\pi ^2 }}} \right),A_k = \sqrt t _k J_k (t_k ) \sim \mu _1 k^{1/6} ,\mu _1 = 0.674885, $ where t k is the maximum of the function $\sqrt t J_k (t)$ on the half-axis t > 0 and J k (t) is the Bessel function. The first values A k and differences A k ? μ1 k 1/6 are tabulated below as follows:   相似文献   

9.
We consider the stochastic recursion ${X_{n+1} = M_{n+1}X_{n} + Q_{n+1}, (n \in \mathbb{N})}$ , where ${Q_n, X_n \in \mathbb{R}^d }$ , M n are similarities of the Euclidean space ${ \mathbb{R}^d }$ and (Q n , M n ) are i.i.d. We study asymptotic properties at infinity of the invariant measure for the Markov chain X n under assumption ${\mathbb{E}{[\log|M|]}=0}$ i.e. in the so called critical case.  相似文献   

10.
In the space L 2[0, π], we consider the operators $$ L = L_0 + V, L_0 = - y'' + (\nu ^2 - 1/4)r^{ - 2} y (\nu \geqslant 1/2) $$ with the Dirichlet boundary conditions. The potential V is the operator of multiplication by a function (in general, complex-valued) in L 2[0, π] satisfying the condition $$ \int\limits_0^\pi {r^\varepsilon } (\pi - r)^\varepsilon |V(r)|dr < \infty , \varepsilon \in [0,1] $$ . We prove the trace formula Σ n=1 n ? λ n ? Σ k=1 m α k (n) ] = 0.  相似文献   

11.
Let A N to be N points in the unit cube in dimension d, and consider the discrepancy function $$ D_N (\vec x): = \sharp \left( {\mathcal{A}_N \cap \left[ {\vec 0,\vec x} \right)} \right) - N\left| {\left[ {\vec 0,\vec x} \right)} \right| $$ Here, $$ \vec x = \left( {\vec x,...,x_d } \right),\left[ {0,\vec x} \right) = \prod\limits_{t = 1}^d {\left[ {0,x_t } \right),} $$ and $ \left| {\left[ {0,\vec x} \right)} \right| $ denotes the Lebesgue measure of the rectangle. We show that necessarily $$ \left\| {D_N } \right\|_{L^1 (log L)^{(d - 2)/2} } \gtrsim \left( {log N} \right)^{\left( {d - 1} \right)/2} . $$ In dimension d = 2, the ‘log L’ term has power zero, which corresponds to a Theorem due to [11]. The power on log L in dimension d ≥ 3 appears to be new, and supports a well-known conjecture on the L 1 norm of D N . Comments on the discrepancy function in Hardy space also support the conjecture.  相似文献   

12.
Пустьq∈(1, 2) иL=(q?1)?1. Дляz∈[0,L] обозначимδ(z) функцию, для которойδ(z)=1, еслиz≧1/q иδ(z)=0, еслиz<1/q. Пустьy(z) определяется из урав ненияz= =δ(z)q ?1+y(z)q ?1, и регулярное представление \(\mathop \Sigma \limits_{n = 1}^\infty \varepsilon _n \left( x \right)q^{ - n} \) аргументах определя ется из следующих соотношен ий: $$x = x_0 , \varepsilon _n \left( x \right) = \delta \left( {x_n } \right), x_{n + 1} = y\left( {x_n } \right).$$ ФункцияF: [0,L]→C называе тся аддитивной, если о на представляется в вид е $$F\left( x \right) = \mathop \Sigma \limits_{n = 1}^\infty \varepsilon _n \left( x \right)a_n ,$$ где ε ¦a n ¦<∞. «Бесконеч ное» представление 1=εl i q ?1 числа 1 определяется с ледующим образом: еслие n (1)=1 для б есконечно многихп, т оl n =ε n (1) (n=1, 2, ...); если ? максим альный индекс, для которогоε s (1)=1, то $$l_{ks + 1} = \left\{ \begin{gathered} \varepsilon _i \left( 1 \right) \left( {k = 0, 1, 2, ...; i = 1, ..., s - 1} \right) \hfill \\ 0 \left( {i = 0; k = 1, 2, ...} \right). \hfill \\ \end{gathered} \right.$$ В более ранней работе, опубликованной в это м журнале, авторы доказали, что а ддитивная функция является неп рерывной на отрезке [0,L] тогда и только тогда, когда ра венство $$a_n = \mathop \Sigma \limits_{i = 1}^\infty l_i a_{n + 1} $$ выполняется для всехnN. В настоящей работе ра ссматриваются непре рывные функции для которых в ыполняются дополнительные усло вия видаa n =O(q ??n ) (0a n ≧0. Анализируются их свя зи с корнями функцииG(z)=1 +ε l i z i . Доказы вается, что непрерывн ая аддитивная функция и ли вляется линейной, или нигде не дифференцир уема на отрезке [0,L].  相似文献   

13.
Assume that L p,q , $L^{p_1 ,q_1 } ,...,L^{p_n ,q_n } $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \{ (f_1 ,...,f_n ) \in L^{p_{1,} q_1 } \times \cdots \times L^{p_n ,q_n } :f_1 \cdots f_n \in L^{p,q} \} $ . We prove the following dichotomy: either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is σ-porous in $L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ , provided 1/p ≠ 1/p 1 + … + 1/p n . In general case we obtain that either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is meager. This is a generalization of the results for classical L p spaces.  相似文献   

14.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

15.
In this paper, the authors give the boundedness of the commutator [b, ????,?? ] from the homogeneous Sobolev space $\dot L_\gamma ^p \left( {\mathbb{R}^n } \right)$ to the Lebesgue space L p (? n ) for 1 < p < ??, where ????,?? denotes the Marcinkiewicz integral with rough hypersingular kernel defined by $\mu _{\Omega ,\gamma } f\left( x \right) = \left( {\int_0^\infty {\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega \left( {x - y} \right)}} {{\left| {x - y} \right|^{n - 1} }}f\left( y \right)dy} } \right|^2 \frac{{dt}} {{t^{3 + 2\gamma } }}} } \right)^{\frac{1} {2}} ,$ , with ?? ?? L 1(S n?1) for $0 < \gamma < min\left\{ {\frac{n} {2},\frac{n} {p}} \right\}$ or ?? ?? L(log+ L) ?? (S n?1) for $\left| {1 - \frac{2} {p}} \right| < \beta < 1\left( {0 < \gamma < \frac{n} {2}} \right)$ , respectively.  相似文献   

16.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

17.
Let $ \mathcal{P}_n $ denote the set of algebraic polynomials of degree n with the real coefficients. Stein and Wpainger [1] proved that $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \leqslant C_n , $$ where C n depends only on n. Later A. Carbery, S. Wainger and J. Wright (according to a communication obtained from I. R. Parissis), and Parissis [3] obtained the following sharp order estimate $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \sim \ln n. $$ . Now let $ \mathcal{T}_n $ denote the set of trigonometric polynomials $$ t(x) = \frac{{a_0 }} {2} + \sum\limits_{k = 1}^n {(a_k coskx + b_k sinkx)} $$ with real coefficients a k , b k . The main result of the paper is that $$ \mathop {\sup }\limits_{t( \cdot ) \in \mathcal{T}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{it(x)} }} {x}dx} } \right| \leqslant C_n , $$ with an effective bound on C n . Besides, an analog of a lemma, due to I. M. Vinogradov, is established, concerning the estimate of the measure of the set, where a polynomial is small, via the coefficients of the polynomial.  相似文献   

18.
The paper gives some solvability conditions of the Dirichlet problem for the second order elliptic equation $$ - div(A(x)\nabla u) + (\bar b(x),\nabla u) - div(\bar c(x)u) + d(x)u = f(x) - divF(x),x \in Q,u|_{\partial Q} = u_0 \in L_2 (\partial Q) $$ in bounded domain Q ? R n (n ≥ 2) with smooth boundary ?QC 1. In particular, it is proved that if the homogeneous problem has only the trivial solution, then for any u 0L 2(?Q) and f, F from the corresponding functional spaces the solution of the non-homogeneous problem exists, from Gushchin’s space $ C_{n - 1} (\bar Q) $ and the following inequality is true: $$ \begin{gathered} \left\| u \right\|_{C_{n - 1} (\bar Q)}^2 + \mathop \smallint \limits_Q r\left| {\nabla u} \right|^2 dx \leqslant \hfill \\ \leqslant C\left( {\left\| {u_0 } \right\|_{L_2 (\partial Q)}^2 + \mathop \smallint \limits_Q r^3 (1 + |\ln r|)^{3/2} f^2 dx + \mathop \smallint \limits_Q r(1 + |\ln r|)^{3/2} |F|^2 dx} \right) \hfill \\ \end{gathered} $$ where r(x) is the distance from a point xQ to the boundary ?Q and the constant C does not depend on u 0, f and F.  相似文献   

19.
В статье рассматрива ются множестваQ n , 1≦п<∞, ортонормированных с истемΦ={φ i (x)} i n =1, состоящих из функций, постоянных на интервалах \(\left( {\frac{{j - 1}}{n}, \frac{j}{n}} \right)\) , 1 ≦j ≦j ≦п. НаQ n естественно перенос ится с группы ортогон альных матриц порядкаn мера Хаара. Изучается поведение наQ n функци и $$S(\Phi ) = \mathop {\sup }\limits_{\mathop \sum \limits_{i = 1}^n y_i^2 = 1} (\int\limits_0^1 {\mathop {sup}\limits_{1 \leqq r \leqq n} } (\mathop \sum \limits_{i = 1}^n y_i \varphi (x))^2 dx)^{1/2} $$ . Доказывается, что приt > 0 иn=1,2,... $$\mu \{ \Phi \in Q^n :s(\Phi ) \geqq t\} \leqq (Ce^{ - \gamma t^2 } )^n $$ .  相似文献   

20.
Let \(f(z): = \sum\nolimits_{j = 0}^\infty {a_j z^J } \) be entire, witha j≠0,j large enough, \(\lim _{J \to \infty } a_{j + 1} /a_J = 0\) , and, for someqC, \(q_j : = a_{j - 1} a_{j + 1} /a_j^2 \to q\) asj→∞. LetE mn(f; r) denote the error in best rational approximation off in the uniform norm on |z‖≤r, by rational functions of type (m, n). We study the behavior ofE mn(f; r) asm and/orn→∞. For example, whenq above is not a root of unity, or whenq is a root of unity, butq m has a certain asymptotic expansion asm→∞, then we show that, for each fixed positive integern, ,m→∞. In particular, this applies to the Mittag-Leffler functions \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /\Gamma (1 + j/\lambda )} \) and to \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /(j!)^{I/\lambda } } \) , λ>0. When |q‖<1, we also handle the diagonal case, showing, for example, that ,n→∞. Under mild additional conditions, we show that we can replace 1+0(1) n by 1+0(1). In all cases we show that the poles of the best approximants approach ∞ asm→∞.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号