首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于超声同时检测血流速度(U)和管腔直径(D)脉动变化的血流量-横截面积(QA)和直径-速度(ln (D) U)法是当前局域脉搏波速(PWV)检测的研究热点。通过仿真和临床实验系统比较了QA与ln (D) U方法的检测精度。对临床实测的颈动脉管腔半径和中心血流速度脉动变化,利用FIELDⅡ建立估计PWV的理论模型。30例仿真结果表明,QA法和ln (D) U法检测PWV与理论预设值的归一化均方根误差分别为0.30±0.08和0.45±0.13;两个年龄组20例临床结果表明,QA法和ln (D) U法对同一受试者连续两次颈动脉PWV检测的相关系数为0.94,变异系数分别为12.08V和13.17V。仿真和临床实验结果均表明QA法局域PWV的检测性能更好。  相似文献   

2.
We present an algorithm and program called Pattern Picker that performs editing of raw peak lists derived from multidimensional NMR experiments with characteristic peak patterns. Pattern Picker detects groups of correlated peaks within peak lists from reduced dimensionality triple resonance (RD-TR) NMR spectra, with high fidelity and high yield. With typical quality RD-TR NMR data sets, Pattern Picker performs almost as well as human analysis, and is very robust in discriminating real peak sets from noise and other artifacts in unedited peak lists. The program uses a depth-first search algorithm with short-circuiting to efficiently explore a search tree representing every possible combination of peaks forming a group. The Pattern Picker program is particularly valuable for creating an automated peak picking/editing process. The Pattern Picker algorithm can be applied to a broad range of experiments with distinct peak patterns including RD, G-matrix Fourier transformation (GFT) NMR spectra, and experiments to measure scalar and residual dipolar coupling, thus promoting the use of experiments that are typically harder for a human to analyze. Since the complexity of peak patterns becomes a benefit rather than a drawback, Pattern Picker opens new opportunities in NMR experiment design.  相似文献   

3.
A phantom-based quality assurance (QA) protocol was developed for a multicenter clinical trial including high angular resolution diffusion imaging (HARDI). A total of 27 3 T MR scanners from 2 major manufacturers, GE (Discovery and Signa scanners) and Siemens (Trio and Skyra scanners), were included in this trial. With this protocol, agar phantoms doped to mimic relaxation properties of brain tissue are scanned on a monthly basis, and quantitative procedures are used to detect spiking and to evaluate eddy current and Nyquist ghosting artifacts. In this study, simulations were used to determine alarm thresholds for minimal acceptable signal-to-noise ratio (SNR). Our results showed that spiking artifact was the most frequently observed type of artifact. Overall, Trio scanners exhibited less eddy current distortion than GE scanners, which in turn showed less distortion than Skyra scanners. This difference was mainly caused by the different sequences used on these scanners. The SNR for phantom scans was closely correlated with the SNR from volunteers. Nearly all of the phantom measurements with artifact-free images were above the alarm threshold, suggesting that the scanners are stable longitudinally. Software upgrades and hardware replacement sometimes affected SNR substantially but sometimes did not. In light of these results, it is important to monitor longitudinal SNR with phantom QA to help interpret potential effects on in vivo measurements. Our phantom QA procedure for HARDI scans was successful in tracking scanner performance and detecting unwanted artifacts.  相似文献   

4.
The loss of pulmonary artery (PA) compliance has significant pathophysiological effect on the right ventricle. Noninvasive and reliable assessment of PA wall stiffness would be an essential determiner of right heart load and a clinically useful factor to assess cardiovascular risk. Two MRI techniques have been proposed for assessing PA stiffness by measuring pulse wave velocity (PWV): transit time (TT) and flow area (QA). However, no data are available that compares the two techniques and evaluates their performance, especially over a wide range of PWV values or at 3.0-T, which is the purpose of the present study. Thirty-three patients with different heart conditions were imaged using optimized high-temporal resolution and high-spatial resolution velocity-encoding MRI sequences. Statistical analysis was conducted to study intermethod, interobserver and intraobserver variabilities. The PWV measurements using TT and QA techniques showed good agreement (P>0.1). The Bland-Altman analysis showed negligible differences between the two methods (mean±S.D.=0.11±0.35 m/s, correlation coefficient r=0.94). The repeated measurements showed low interobserver and intraobserver variabilities, although the S.D. of the differences was larger in the QA technique. The mean±S.D. of the TT/QA measurement differences were −0.05±0.2/0.0±0.36 m/s and 0.02±0.26/0.02±0.39 m/s for the interobserver and intraobserver differences, respectively. In conclusion, each technique has its own advantages and disadvantages. The two techniques result in similar measurements, although the QA method is more subjective due to its dependency on operator intervention.  相似文献   

5.

Introduction

The National Cancer Institute Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community.

Methods

We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN.

Results

There are a variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network.

Conclusions

As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers.  相似文献   

6.
The clinical applications of computer aided three-dimensional (3D) data visualization are now numerous. In this paper, we describe the importance of visualization in clinical applications and the methods that are appropriate to particular specialisations. We discuss the requirements of some of these clinical specialisations and describe how developments have taken place over the years to meet these both in terms of new computer algorithms and hardware. We present some selected examples of major clinical applications of data visualization, and end with a note on social, legal and ethical implications.  相似文献   

7.
Microbeam radiation therapy (MRT) is a novel irradiation technique for brain tumours treatment currently under development at the European Synchrotron Radiation Facility in Grenoble, France. The technique is based on the spatial fractionation of a highly brilliant synchrotron X‐ray beam into an array of microbeams using a multi‐slit collimator (MSC). After promising pre‐clinical results, veterinary trials have recently commenced requiring the need for dedicated quality assurance (QA) procedures. The quality of MRT treatment demands reproducible and precise spatial fractionation of the incoming synchrotron beam. The intensity profile of the microbeams must also be quickly and quantitatively characterized prior to each treatment for comparison with that used for input to the dose‐planning calculations. The Centre for Medical Radiation Physics (University of Wollongong, Australia) has developed an X‐ray treatment monitoring system (X‐Tream) which incorporates a high‐spatial‐resolution silicon strip detector (SSD) specifically designed for MRT. In‐air measurements of the horizontal profile of the intrinsic microbeam X‐ray field in order to determine the relative intensity of each microbeam are presented, and the alignment of the MSC is also assessed. The results show that the SSD is able to resolve individual microbeams which therefore provides invaluable QA of the horizontal field size and microbeam number and shape. They also demonstrate that the SSD used in the X‐Tream system is very sensitive to any small misalignment of the MSC. In order to allow as rapid QA as possible, a fast alignment procedure of the SSD based on X‐ray imaging with a low‐intensity low‐energy beam has been developed and is presented in this publication.  相似文献   

8.
Biomechanical properties of soft tissues are important indicators of tissue functions which can be used for clinical diagnosis and disease monitoring. Elastography, incorporating the principles of elasticity measurements into imaging modalities, provides quantitative assessment of elastic properties of biological tissues. Benefiting from high-resolution, noninvasive, and three-dimensional optical coherence tomography, optical coherence elastography (OCE) is an emerging optical imaging modality to characterize and map biomechanical properties of soft tissues. Recently, acoustic radiation force (ARF)–OCE has been developed for elasticity measurements of ocular tissues, detection of vascular lesions, and monitoring of blood coagulation based on remote and noninvasive ARF excitation to both internal and superficial tissues. Here, we describe the advantages of the ARF–OCE technique, the measurement methods in ARF–OCE, the applications in biomedical detection, current challenges, and advances. ARF–OCE technology has the potential to become a powerful tool for in vivo elasticity assessment of biological samples in a noncontact, noninvasive, and high-resolution nature.  相似文献   

9.
Shuang Wang 《中国物理 B》2022,31(12):128702-128702
Physical biology is an interdisciplinary field that bridges biology with physical sciences and engineering. Single-molecule physical biology focuses on dynamics of individual biomolecules and complexes, aiming to answering basic questions about their functions and mechanisms. It takes advantages of physical methodologies to gain quantitative understanding of biological processes, often engaging precise physical measurements of reconstructed objects to avoid interference from unnecessary complications. In this review, we (i) briefly introduce concepts of single-molecule physical biology, (ii) describe extensively used single-molecule methodologies that have been developed to address key questions in two important objects of single-molecule physical biology, namely, nucleic acid-interacting proteins and membrane-interacting proteins, and (iii) show by a few successful examples how one may use single-molecule methods to deepen our understanding of protein machines.  相似文献   

10.
Diffusion has been widely adopted in the clinical setting to study the microstructural tissue changes in conjunction with anatomic imaging and metabolic imaging to offer insights on the status of the tissue injury or lesion. However, geometric distortions caused by magnetic susceptibility effects, eddy currents and gradient imperfections greatly affect the clinical utility of the diffusion images. Several diffusion methods have been proposed in the recent years to obtain diffusion parameters with increased accuracy. In most cases, the comparisons to the clinical standard echo-planar imaging (EPI) diffusion are done visually without quantitative measurements. In this study, we present three simple, complementary quantitative methods of nonrigid image registration and shape analyses for evaluating spatial distortions on magnetic resonance images with application in comparing single-shot fast spin-echo (SSFSE) and EPI based diffusion measurements. These methods have confirmed the SSFSE based diffusion method is less distorted than the EPI based one, which is generally accepted through visual inspection.  相似文献   

11.
Steep variations in concentration and temperature frequently occur in small fluid compartments such as those found in cells or microfluidic devices. A quantitative characterization of concentration and temperature gradients is therefore required before these systems can be fully understood. Although different spatially resolved fluorescence methods have been developed to measure either the temperature or the concentration of ions such as proton or calcium, often concentration measurements depend on temperature and vice versa. Here, we describe a method allowing simultaneous measurement of pH and temperature. This method is based on the detection of the blinking of the fluorescent pH indicator pyranine, a process due to its alternating between a basic form and an acidic form. Fluorescence correlation spectroscopy allows measuring both the protonation and deprotonation rates of pyranine, and each pair of rates can be uniquely related to a pair of pH and temperature values. We show, however, that the relationship between rates, pH and temperature, is very sensitive to the presence of other acid-base molecules in solution. We also show that it is influenced by the overall ionic strength of the solution, in a manner that depends on buffer composition.  相似文献   

12.
Using elementary coordinate-space methods, we show that a three-term separable approximate fully off-shell T-matrix proposed by Kowalski can be reduced to a simpler expression. This T-matrix incorporates off-shell unitarity exactly, is exact half off the energy shell, and is free from the spurious poles that arise in the Noyes approximation. However, numerical tests employing the wave-function model of Picker, Redish, and Stephenson show that for realistic 1So interactions, the Noyes approximation is more accurate than Kowalski's approximation except near the spurious pole at 250 MeV. We give a plausible explanation of this result.  相似文献   

13.
In this work, we describe methodologies for serial volumetric measurements of hippocampi and cerebella. Serial scans were co-registered and intensity matched prior to the volumetric measurements. Manual drawing was used to define the boundaries of the hippocampi. For the cerebellar volumetric measurements, the brain was automatically segmented from the co-registered scans; manual drawing was used to define the boundary between the cerebellum and the cerebrum and brainstem. The operator was blinded to the nature of the subject (patient or normal control) and the chronological order of the scans. The coefficient of reliability of hippocampal volume measurements in a group of 20 controls was 0.078 cm(3) (3.1% of the mean baseline volume); for the cerebellum, the value was 3.8 cm(3) (3.0% of the mean baseline volume). We conclude that the methods presented are valid and that the software provides a useful integrated tool for the quantitative analysis of structural changes in serially acquired volume MRI data in prospective, blinded studies.  相似文献   

14.
The formation of aromatics and polycyclic aromatic hydrocarbons (PAH) in flames is still questionable and needs quantitative experimental data to improve the comprehension of these processes. Although aromatics and PAH are considered as the main species involved in soot formation processes, their quantitative detection still remains difficult. Indeed, it requires very sensitive and robust experimental setups enabling their measurements under very low concentrations (ppm order) in sooting flames conditions. The objective of this work is to propose an alternative setup based on laser diagnostics to allow the possibility of some specific studies of aromatics and PAH compounds in an experimentally less complex manner than conventional methods. We have developed a novel experimental setup, based on calibrated laser induced fluorescence (LIF) inside an expanded free jet, to get quantitative measurements of aromatics compounds after their extraction by a microprobe. Indeed, in the supersonic jet, the spectral simplification due to the cooling allows a selective detection of such complex molecules and their quantification. The experimental set-up as well as the first measurements of the benzene molecule formed in low pressure methane flames are presented in details. Potential of the sensitivity of the method is highlighted by determining very low concentrations of benzene (1–10 ppm). PACS 33.20.Lg; 42.62.-b; 42.62.Fi; 47.70.Pq  相似文献   

15.
We describe methods which can be used to search for pair-produced charged Higgs bosons in e+e? collisions. These methods use a jet identification procedure previously developed by the authors. The results of tests on simulated data are presented. We include a study of effects of QCD backgrounds and a crude estimation of the effects of experimental errors.  相似文献   

16.
We present an experimentalist's view of the theory and published data for the magnetoresistance (MR) of a multilayer composed of alternating ferromagnetic (F) and non-magnetic (N) metals measured with current flow perpendicular to the layer planes (CPP-MR). We explain the advantages of this geometry for determining the fundamental quantities underlying spin-polarized transport, describe the different techniques developed to measure the CPP-MR, summarize the salient features of the models used to analyze experimental data, and describe tests of those models. We then review what has been learned so far about spin-dependent scattering anisotropy and spin relaxation in F-metals and at F/N interfaces, specific resistances of F/N interfaces, the temperature dependence of spin-polarized transport parameters, and mixing of the spin-polarized electron currents. After a brief overview of some new directions, we conclude with a list of questions still to be answered.  相似文献   

17.
18.
Megavoltage photon radiation therapies are widely used in modern cancer treatment. The improvement of the treatment has lead to the need of Quality Assurance (QA) devices to detect malfunctioning or human mistakes during the planning phase and treatment verification. Active electronic devices for 2D or 3D QA in external beam radiotherapy are typically based on analogue/digital mixed signal Data Acquisition Systems (DAS) which are required to have high spatial resolution, large dynamic range, high sensitivity, large numbers of channels and fast real-time capabilities. The Centre of Medical Radiation Physics (CMRP) has developed several multichannel DAS architectures based on different analogue front-ends to suit a wide range of radiotherapy applications. For the purpose of this study, two DAS, with different front-ends, have been equipped with 128 channels and tested in a clinical environment. Data show a good agreement within 1% between the two systems and the ionising chamber currently used for daily QA.  相似文献   

19.
A compact and tractable representation of the grain structure of a material is an extremely valuable tool when carrying out an empirical analysis of the material’s microstructure. Tessellations have proven to be very good choices for such representations. Most widely used tessellation models have convex cells with planar boundaries. Recently, however, a new tessellation model — called the generalised balanced power diagram (GBPD) — has been developed that is very flexible and can incorporate features such as curved boundaries and non-convexity of cells. In order to use a GBPD to describe the grain structure observed in empirical image data, the parameters of the model must be chosen appropriately. This typically involves solving a difficult optimisation problem. In this paper, we describe a method for fitting GBPDs to tomographic image data. This method uses simulated annealing to solve a suitably chosen optimisation problem. We then apply this method to both artificial data and experimental 3D electron backscatter diffraction (3D EBSD) data obtained in order to study the properties of fine-grained materials with superplastic behaviour. The 3D EBSD data required new alignment and segmentation procedures, which we also briefly describe. Our numerical experiments demonstrate the effectiveness of the simulated annealing approach (compared to heuristic fitting methods) and show that GBPDs are able to describe the structures of polycrystalline materials very well.  相似文献   

20.
张晓霞  潘炜  刘永智 《中国物理》2007,16(1):236-239
A number of researchers have reported discrepancies between surface resistance (SR) measurements and classical theoretical predictions in normal metals for millimetre wavelengths (MW). In this paper, a rigorous model is developed for analysing SR of normal metals. This model is based on quantum mechanical analysis of the spatial dispersion within the metal. We use the model to predict SR and eliminate the discrepancies between SR measurements and classical theoretical predictions in normal metals for MW. Moreover, we have compared the results of this model with that of the classical skin-effect model and classical relaxation-effect model. Our analysis shows that the conductivity is not only frequency- but also wave-vector-dependent for MW. We demonstrate that our model has good quantitative agreement with the published experimental data for the room temperature surface resistance of normal metals for MW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号