首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文研究了溶剂效应和结构效应对染料碘(钅翁)盐光物理,光化学性质的影响.观察到在溶剂中离子对可以各种形式存在,如紧密离子对、溶剂分隔离子对或溶剂化的自由离子.溶剂的极性不仅影响各种存在形式的光谱性质,而且影响它们之间的平衡关系,进而影响离子对体系的物理化学性质.染料母核和碘(钅翁)阳离子的结构均对离子对体系的性质有影响.光诱导电子转移反应的热力学驱动力越大,反应速度越快.用分子模拟技术(Molecular Modeling)对离子对体系的立体结构进行了研究,为理解离子对体系的各种物理化学行为提供了重要的参考.  相似文献   

2.
本文研究了溶剂效应和结构效应对染料碘翁盐光物理, 光化学性质的影响。观察到在溶剂中离子对可以各种形式存在, 如紧密离子对、溶剂分隔离子对或溶剂化的自由离子, 溶剂的极性不仅影响各种存在形式的光谱性质, 而且影响它们之间的平衡关系, 进而影响离子对体系的物理化学性质。染料母核和碘翁阳离子的结构均对离子对体系的性质有影响。光诱导电子转移反应的热力学驱动力越大, 反应速度越快。用分子模拟技术(Molecular Modeling)对离子对体系的立体结构进行了研究, 为理解离子对体系的各种物理化学行为提供了重要的参考。  相似文献   

3.
本文研究了溶剂效应和结构效应对染料碘翁盐光物理, 光化学性质的影响。观察到在溶剂中离子对可以各种形式存在, 如紧密离子对、溶剂分隔离子对或溶剂化的自由离子, 溶剂的极性不仅影响各种存在形式的光谱性质, 而且影响它们之间的平衡关系, 进而影响离子对体系的物理化学性质。染料母核和碘翁阳离子的结构均对离子对体系的性质有影响。光诱导电子转移反应的热力学驱动力越大, 反应速度越快。用分子模拟技术(Molecular Modeling)对离子对体系的立体结构进行了研究, 为理解离子对体系的各种物理化学行为提供了重要的参考。  相似文献   

4.
光氧化还原碘盐引发阳离子固化的研究   总被引:1,自引:0,他引:1  
合成了二苯基碘六氟磷酸盐光引发剂。研究了染料的种类和浓度对碘盐引发阳离子光固化速度的影响,用光致电子转移(光氧化还原)理论解释了这些光敏染料的光敏机理。  相似文献   

5.
本文通过吸收光谱、荧光猝灭、光聚合方法对羟基苯基碘盐(HTIB)的光敏引发体系进行了研究,发现具有给电子性的光敏剂香豆素1可以将引发剂羟基苯基碘盐的光响应移到长波区,而引发聚合效率与溶剂的性质有很大的关系.在一般极性溶剂中如DMSO中能有效地引发甲基丙烯酸甲酯(MMA)光聚合,而在电子受体性质的极性溶剂如乙腈中,光聚合反应受阻,这归结于香豆素1与羟基苯基碘盐形成络合物,使得光反应后生成不具活性的产物.该结果对研究其它单苯基碘盐的光敏体系提供了有价值的信息.  相似文献   

6.
周文慧  王冬  王尔JIAN 《化学学报》1998,56(3):244-250
本文设计了染料循环再生的光敏反应体系, 通过对占吨碘翁盐电子反应机制的深入研究, 提出了占吨染料在光敏反应过程中的染料再生循环, 它依次由三个反应过程组成: 在光作用下, 通过电子转移反应, 产生染料氧化褪色体(I); 在H给体存在下, 通过H转移反应, 使产物(I)转化为染料酸式隐色体(II); 在碱作用下, (II)发生去质子反应, 染料再生回复到染料的起始结构。其中光、H给体和碱的作用是再生循环的三个要素, 而控制染料酸式隐色体生成比例是染料再生效率的关键。由乙基曙红碘翁盐/三乙胺组成的染料再生体系的染料敏化效率比单一体系高4倍左右, 同时使活性自由基的数量增殖, 这种体系在实际应用方面具有重要意义。  相似文献   

7.
周文慧  王冬  王尔 《化学学报》1998,56(3):244-250
本文设计了染料循环再生的光敏反应体系, 通过对占吨碘翁盐电子反应机制的深入研究, 提出了占吨染料在光敏反应过程中的染料再生循环, 它依次由三个反应过程组成: 在光作用下, 通过电子转移反应, 产生染料氧化褪色体(I); 在H给体存在下, 通过H转移反应, 使产物(I)转化为染料酸式隐色体(II); 在碱作用下, (II)发生去质子反应, 染料再生回复到染料的起始结构。其中光、H给体和碱的作用是再生循环的三个要素, 而控制染料酸式隐色体生成比例是染料再生效率的关键。由乙基曙红碘翁盐/三乙胺组成的染料再生体系的染料敏化效率比单一体系高4倍左右, 同时使活性自由基的数量增殖, 这种体系在实际应用方面具有重要意义。  相似文献   

8.
研究了 3_丙烯酰胺基_9_乙基咔唑 (AAECZ) /氯化二苯基碘钅翁盐 (DPIOC)组成的光敏引发体系引发的甲基丙烯酸甲酯 (MMA)光聚合 ,并研究了各因素对聚合速率的影响 ,得到了聚合动力学方程 ;讨论了温度对聚合反应的影响 ,并探讨了引发机理  相似文献   

9.
光氧化还原碘Wong盐引发阳离子固化的研究   总被引:3,自引:0,他引:3  
合成了二苯基碘Wong六氟磷酸盐光引发剂。研究了染料的种类和学地磺Wong盐引发阳离子光固化速度的影响,用光致电子转移理论解释了这些光敏染料的光敏机理。  相似文献   

10.
新型感可见光的光引发体系乙基曙红碘Weng盐的研究   总被引:1,自引:0,他引:1  
合成并研究了新型感可见光的光引发体系乙基曙红碘Weng盐,结果表明,该引发剂的物理化学性质和光敏引发效率受其结构,介质性质和浓度等诸多因素影响。在可见光照射下,发生由乙基曙红阴离子向二苯基碘Weng阳离子的电子转移反应,产且具有引发活性的苯自由基和非活性的乙基曙红自由基。  相似文献   

11.
The correlation of dibutyl-ether-ester of xanthene dye structures with their photophysical properties is discussed with respect to their capability as fluorescent probes based on ultraviolet–visible absorption, fluorescence spectra and fluorescence lifetimes measured in different solvents. It was found that the dibutyl-ether-ester of fluorescein is very weakly emissive in aprotic solvents, but fairly strong fluorescent in alcohols. The dependence of fluorescence quantum yield (Φf) and lifetime (τf) on solvent polarity suggests non-involvement of the intra-molecular photoinduced electron transfer (PeT) mechanism, suggested previously to account for the emission efficiency of fluorescein derivatives. The xanthene dyes intend to self-assemble in aprotic solvents, less polar solvents facilitate the aggregation while hydrogen bonding disfavor it. The formation of non-emissive H-aggregates is proposed to be responsible for their fluorescent behavior. The esterification showed stronger influences on the photophysics than the etherification, i.e. the former caused larger reduction of Φf owing to the internal conversion. The halogenation decreases the fluorescence quantum yield and lifetime of the xanthene dyes, owing to the enhancement of inter-system crossing process.  相似文献   

12.
Photoexcitation of chromophoric dimers constrained to a symmetric pi-stacked geometry by their molecular structure usually produces excimers independent of solvent polarity, while dimers with edge-to-edge perpendicular pi systems undergo excited-state symmetry breaking in highly polar solvents leading to intradimer charge separation. We present direct evidence for symmetry breaking in the lowest excited singlet state of a symmetric cofacial dimer of 1,7-bis(pyrrolidin-1'-yl)-perylene-3,4:9,10-bis(dicarboximide) (5PDI) in the low polarity solvent toluene to produce a radical ion pair quantitatively. This dimer, cof-5PDI2, was synthesized by attaching two 5PDI chromophores via imide groups to a xanthene spacer. For comparison, a linear symmetric dimer, lin-5PDI2, was prepared in which the 5PDI chromophores are linked end-to-end via a N-N single bond between their imides. The edge-to-edge pi systems of the 5PDI chromophores within lin-5PDI2 are perpendicular to one another. Ground-state absorption spectra of both 5PDI dimers show exciton coupling, which is consistent with the orientation of the 5PDI chromophores relative to one another. Ultrafast transient absorption spectroscopy following excitation of the dimers with 700 nm, 100 fs laser pulses shows that quantitative intradimer electron transfer occurs in cof-5PDI2 in toluene with tau = 0.17 ps followed by charge recombination to the ground state with tau = 222 ps. Similar measurements on lin-5PDI2 reveal that photoinduced electron transfer does not occur in toluene, but occurs in more polar solvents such as 2-methyltetrahydrofuran, wherein tau = 55 ps for charge separation and tau = 99 ps for charge recombination. Excited-state symmetry breaking in 5PDI dimers provides new routes to biomimetic charge separation and storage assemblies that can be more easily prepared and modified than those based on multiple tetrapyrrole macrocycles.  相似文献   

13.
This paper investigates how solution conditions, especially solvent polarity and hydrogen bonding, affect the fluorescence of ellipticine, a natural plant alkaloid with anticancer activity. A total of 16 solvents that cover a wide range of polarities were tested. The ultraviolet (UV) absorption and fluorescence emission of ellipticine were found to be solvent dependent. The absorption and emission maximum shifted to higher wavelengths (red shift) with increased solvent polarity. The difference in absorption and emission maximum (Stokes' shift) was large, approximately 10,000-11,000 cm-1, in polar solvents (with orientation polarizability Deltaf>0.2) but unusually small, approximately 8900 cm-1, in nonpolar solvents (hexane and cyclohexane). Large Stokes' shifts were due to an intramolecular charge transfer (ICT), which was enabled by large solvent polarity and hydrogen bonding of ellipticine with the solvents. Two transitions were found in the Lippert-Mataga plot between (1) nonpolar and semipolar solvents and between (2) semipolar and polar solvents. The first transition reflected the formation of hydrogen bonds between ellipticine and the solvents whereas the second transition indicated that ellipticine underwent an ICT. In addition, the larger extinction coefficients and the longer lifetime of ellipticine obtained in protic solvents were attributed to the formation of stronger hydrogen bonds. The photophysical response of ellipticine to changes in solvent polarity and hydrogen bond formation could be used to infer the location of ellipticine in a heterogeneous medium, namely liposomes in aqueous solution. A relatively large red shift of emission in liposomes indicated that ellipticine may be in a more polar environment with respect to the lipid bilayer, possibly close to the hydrophilic interface.  相似文献   

14.
The effects of the protic and aprotic polar solvents on the emission spectrum of the naphthalene-triethyl-amine system in THF were studied under conditions of steady-state illumination. The fluorescence spectrum of the naphthalene-triethylamine system consists of two emission bands, the fluorescence band of naphthalene (band A, 329 nm) and the emission band of the exciplex(band B, 468 nm). The intensities of both the emission bands decrease with increasing the solvent polarity. The intensity of band B also decreases due to the hy-drogen-bonding interaction between triethylamine and protic solvent, while that of band A increases. It is thus suggested that the quenching of naphthalene fluorescence by triethylamine in THF occurs through the charge transfer and electron transfer reactions. The spectral changes upon the increase of solvent polarity can be explained by the dependences of the equilibrium constant between exciplex and ion-pair and the rate constant for the electron transfer reaction from triethyl.amine to the excited naphthalene on the rel.ative permittivity of solvent. It is shown that the formation of intermolecular hydrogen-bonding between triethylamine and protic solvent suppresses the quenching reaction by the decrease in free amine. Acetonitrile has only a polar effect and trichloroacetic acid only a hydrogen-bonding(or protonation) effect, while alcohols have both the effects. The effects of alcohols could be separated into the effects of solvent polarity and intermolecular hy-drogen-bonding interaction quantitatively.  相似文献   

15.
The spectral and photophysical properties of a new intramolecular charge transfer (ICT) probe, namely 4′-dimethylamino-2,5-dihydroxychalcone (DMADHC) were studied in different solvents by using steady-state absorption and emission spectroscopy. Whereas the absorption spectrum undergoes minor change with increasing polarity of the solvents, the fluorescence spectrum experiences a distinct bathochromic shift in the band position and the fluorescence quantum yield increases reaching a maximum before decrease with increasing the solvent polarity. The magnitude of change in the dipole moment was calculated based on the Lippert–Mataga equation. These results give the evidence about the intramolecular charge transfer character in the emitting singlet state of this compound.  相似文献   

16.
Fluorescence properties of fluorescein-based probes are shown to be finely controlled by the rate of photoinduced electron transfer from the benzoic acid moiety (electron donor) to the singlet excited state of the xanthene moiety (electron acceptor fluorophore). The occurrence of photoinduced electron transfer is clearly evidenced by transient absorption spectra showing bands due to the radical cation of the electron donor moiety and the radical anion of the xanthene moiety, observed in laser flash photolysis experiments. The photoinduced electron transfer rates and the rates of back electron transfer follow the Marcus parabolic dependence of electron transfer rate on the driving force. Such a dependence provides for the first time a quantitative basis for a rational design principle which has high efficiency in modulating fluorescence properties of fluorescein-based probes.  相似文献   

17.
以4-溴-1,8-萘酐为原料,合成脂溶性4-[2-(二甲氨基)乙氧基]-N-十八烷基-1,8-萘酰亚胺。对其进行了1H NMR和IR表征。考察了荧光染料在DMF、乙腈、丙酮、乙酸乙酯和乙醚5种溶剂中的荧光光谱和吸收光谱,发现由于溶剂效应,随溶剂极性由小到大,荧光光谱和吸收光谱的最大峰值波长逐渐红移。考察了不同金属离子和pH对荧光染料荧光光谱的影响,结果表明荧光强度随Fe3+、Zn2+、Co2+浓度增大而逐渐增强,Fe3+的影响最为显著;当pH<7时,荧光强度随着pH的降低逐渐增强;进一步考察了Fe3+、Zn2+、Co2+对吸收光谱的影响,结果发现吸收光谱均蓝移。分析认为荧光染料的光致电子转移被阻碍,实验结果表明,合成的新型荧光染料可用于溶液中金属离子和pH的检测。  相似文献   

18.
The effects of three different variables (initiator concentration, polarity of the solvent and reaction temperature) on the rate of dispersion polymerization of styrene in alcohols have been investigated. It was found that the rate of polymerization increases with the initiator (AIBN) concentration at the 0% conversion level and becomes independent of it at higher monomer conversions. More significant was the result that the rate was also found to increase with solvent polarity. This is consistent with thermodynamic equilibrium calculations which account for the partitioning behavior of monomer and solvent in both the solution and the particle phases. The results further suggest the existence of two different kinetic regions: one at low conversions, where the reaction takes place primarily in the solution phase, and one at high conversions, where the reaction takes place primarily in the particle phase. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2907–2915, 1997  相似文献   

19.
Spectral-luminescent properties of the newly synthesized 2-(3-coumarinyl)-5-(2′-(R-amino)-phenyl)-1,3,4-oxadiazoles has been investigated in solvents of various polarity and hydrogen-bonding ability. It has been found that for all the studied compounds no excited state intramolecular proton transfer occurs despite the presence of coumarinyl fragment - electron acceptor effect of the coumarinyl fragment is not sufficient to increase the excited state acidity of the amino group. It has been found that the absorption spectra of the studied compounds shift to higher energy with increase in solvent polarity, whereas corresponding fluorescence spectra shift to lower energy with solvent polarity increase. It has been suggested that long-wavelength shifts of the fluorescence spectra of the studied compounds with increase in solvent polarity is caused by the solvent relaxation. The observed solvent relaxation effect allow us to propose some of the studied compounds as potential probes to monitor changes in solvent relaxation in low-polar media and as potential probes for rigidochromic effect.  相似文献   

20.
Femtosecond transient IR and visible absorption spectroscopies have been employed to investigate the excited-state photophysics of vitamin B12 (cyanocobalamin, CNCbl) and the related cob(III)alamins, azidocobalamin (N3Cbl), and aquocobalamin (H2OCbl). Excitation of CNCbl, H2OCbl, or N3Cbl results in rapid formation of a short-lived excited state followed by ground-state recovery on time scales ranging from a few picoseconds to a few tens of picoseconds. The lifetime of the intermediate state is influenced by the sigma-donating ability of the axial ligand, decreasing in the order CNCbl > N3Cbl > H2OCbl, and by the polarity of the solvent, decreasing with increasing solvent polarity. The peak of the excited-state visible absorption spectrum is shifted to ca. 490 nm, and the shape of the spectrum is characteristic of weak axial ligands, similar to those observed for cob(II)alamin, base-off cobalamins, or cobinamides. Transient IR spectra of the upper CN and N3 ligands are red-shifted 20-30 cm(-1) from the ground-state frequencies, consistent with a weakened Co-upper ligand bond. These results suggest that the transient intermediate state can be attributed to a corrin ring pi to Co 3d(z2) ligand to metal charge transfer (LMCT) state. In this state bonds between the cobalt and the axial ligands are weakened and lengthened with respect to the corresponding ground states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号