首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the possibility of localizing various matter fields on a bent AdS4 (dS4) thick brane in AdS5. For spin 0 scalar field, we find a massless zero mode and an excited state which can be localized on the bent brane. For spin 1 vector field, there is only a massless zero mode on the bent brane. For spin 1/2 fermion field, it is shown that, in the case of no Yukawa coupling of scalar-fermion, there is no existence of localized massless zero mode for both left and right chiral fermions. In order to localize massless fermions, some kind of Yukawa coupling must be included. We study two types of Yukawa couplings as examples. Localization property of chiral fermions is related to the parameters of the brane model, the Yukawa coupling constant and the cosmological constant of the 4-dimensional space–time.  相似文献   

2.
Making a revision of mistakes in Ref. [19], we present a detailed study of the competition and interplay between the d-density wave (DDW) and d-wave superconductivity (DSC) within the fluctuation-exchange (FLEX) approximation for the two-dimensional (2D) Hubbard model. In order to stabilize the DDW state with respect to phase separation at lower dopings a small nearest-neighbor Coulomb repulsion is included within the Hartree-Fock approximation. We solve the coupled gap equations for the DDW, DSC, and π-pairing as the possible order parameters, which are caused by exchange of spin fluctuations, together with calculating the spin fluctuation pairing interaction self-consistently within the FLEX approximation. We show that even when nesting of the Fermi surface is perfect, as in a square lattice with only nearest-neighbor hopping, there is coexistence of DSC and DDW in a large region of dopings close to the quantum critical point (QCP) at which the DDW state vanishes. In particular, we find that in the presence of DDW order the superconducting transition temperature Tc can be much higher compared to pure superconductivity, since the pairing interaction is strongly enhanced due to the feedback effect on spin fluctuations of the DDW gap. π-pairing appears generically in the coexistence region, but its feedback on the other order parameters is very small. In the present work, we have developed a weak-coupling theory of the competition between DDW and DSC in 2D Hubbard model, using the static spin fluctuation obtained within FLEX approximation and ignoring the self-energy effect of spin fluctuations. For our model calculations in the weak-coupling limit we have taken U/t=3.4, since the antiferromagnetic instability occurs for higher values of U/t.  相似文献   

3.
4.
Pairing symmetry in oxypnictides, a new family of multiband high-T c superconductors, is partially imposed by the positions of multiple Fermi pockets, which itself can give rise to new order parameters, such as s +,− states or the state of the symmetry. Other pairing states may appear on small pockets for long-range interactions, but they are expected to be sensitive to defects. We identify the competing antiferromagnetic order with the triplet exciton transition in the semimetallic background and discuss whether its coexistence with superconductivity explains the doping dependence of T c . The text was submitted by the authors in English.  相似文献   

5.
An overview is given on muon spin relaxation (SR) measurements in frustrated and/or low dimensional spin systems. In the frustrated Kagomé lattice system SrCr8Ga4O19, we observed dynamic spin fluctuations of 30 GHz, without any static frozen component even atT=0.1 K, much below the susceptibility-cusp temperatureT g=3.5 K. This is in clear contrast with the case in dilute-alloy spin glassesCuMn andAuFe, where static order develops belowT g. We also present the dimensionality dependence of the sub-lattice magnetization curves in 2-d Heisenberg systems, the remarkable suppression of the ordering temperature in a 1-d system Sr2CuO3, the observation of activation type spin dynamics in a 1-d Ising ferromagnet (DMeFc)(TCNE) aboveT c, slow spin fluctuations ( 60 MHz) in Haldane-gap systems at low temperatures, and some results from organic 1-d and 2-d magnetic systems.  相似文献   

6.
用脉冲激光沉积方法(PLD)在铝酸镧衬底上制备了c取向的高氧空位含量的锶钴氧薄膜.X射线衍射分析表明薄膜单一取向且没有明显杂相.原位的高气压反射式高能电子衍射仪(RHEED)监测显示,薄膜为层状生长.通过对薄膜磁化强度随温度、磁场及时间的变化曲线进行测量,发现零场冷曲线上可能存在两个特征温度:TfTa.Tf为对应玻璃态的冻结温度而Ta对应少量的不缺 关键词: 自旋玻璃 超交换相互作用 双交换相互作用 脉冲激光沉积  相似文献   

7.
The normal A-site spinels MnAl2O4, FeAl2O4, CoAl2O4, as well as related mixed (Mn0.5Fe0.5Al2O4) and partially inverted (Fe1.4Al1.6O4) spinels have been studied by μSR. The magnetic ions are subject to magnetic frustration by competing interactions. In all materials and at all temperatures the μSR spectra consist of two signals suggesting a bimodal distribution of the fluctuation rates of magnetic moments. A characteristic temperature T M is found in each compound, representing either a magnetic phase transition into a long-range ordered state (MnAl2O4, Fe1.4Al1.6O4) or the formation of a spin liquid phase (FeAl2O4, CoAl2O4, Mn0.5Fe0.5Al2O4). The magnetic ground state of MnAl2O4 shows coexistence of antiferromagnetic and spin liquid phases. In FeAl2O4 and CoAl2O4 long-range order is suppressed altogether, the ground state can be characterized as a fast relaxing spin liquid coexisting with a small fraction of paramagnetic spins. The partial replacement of Mn by Fe in Mn0.5Fe0.5Al2O4 prevents long-range order and leads to a spin liquid state in the low temperature limit. The partial occupancy of B-sites by magnetic ions in Fe1.4Al1.6O4 strengthens the exchange coupling, allowing the formation of long-range magnetic order at a rather high temperature (~100 K). Magnetic phase diagrams are presented demonstrating that for the studied compounds the magnetic properties are determined by the degree of frustration.  相似文献   

8.
The electron spin and nuclear spin relaxation in liquid solution arising from the electron-nuclear interaction is determined for the general case when the g-tensor may be anisotropic and the nine hyperfine interaction tensor components may be all different. The theoretical expressions are used in an attempt to interpret the relaxation times T 1 and T 2 for the various nuclei in the complex ruthenium acetylacetonate.  相似文献   

9.
The spin dipole–spin dipole and spin–orbit coupling contributions to the zero-field splitting parameters D and E of [CH3–N–CH3]+, [CH3–P–CH3]+, and [CH3–As–CH3]+ have been calculated from CASSCF(14,14)/cc-pVTZ wave functions and the Breit–Pauli Hamiltonian at T1 B3LYP/cc-pVTZ optimized geometries. The spin–orbit coupling contributions represent a minor correction for the dimethylnitrenium cation, which has a triplet ground state. They dominate the spin–spin terms by an order of magnitude in the dimethylphosphenium cation and by more than two orders of magnitude in the dimethylarsenium cation, both of which have a singlet ground state. The properties of all these biradicaloids follow expectations based on the simple algebraic 2-in-2 model of biradical structure.  相似文献   

10.
Yue-Xia Hu  Xue-Feng Wang 《哲学杂志》2013,93(11):1391-1400
The perturbation formulae of the spin Hamiltonian parameters (the anisotropic g factors, hyperfine structure constants and superhyperfine parameters) are established for a 5d7 ion in an orthorhombically elongated octahedron based on the cluster approach. These formulae are applied to the theoretical studies of the EPR spectra and the local structures for the tetragonal and orthorhombic Ir2+ centers in AgCl. For the tetragonal Ir2+ center, the uncompensated substitutional [IrCl6]4 cluster is found to experience a relative elongation of about 0.08 Å along the C 4 axis due to the Jahn–Teller effect. For the orthorhombic center, the ligand octahedron also suffers Jahn–Teller elongation (by about 0.08 Å) along the [001] (or Z) axis. Meanwhile, the ligand Cl intervening in the impurity Ir2+ and the next nearest neighbor silver vacancy VAg along the [100] (or X) axis may undergo an inward displacement of 0.004 Å towards the center of the octahedron due to electrostatic repulsion of the VAg. The calculated spin Hamiltonian parameters based on the above local structures show good agreement with experimental data for both centers.  相似文献   

11.
Theory of spin fluctuations for itinerant magnetism and its application to high temperature superconductivity are reviewed. After a brief introduction to the whole subject the developments of the self-consistent renormalization theory of spin fluctuations are summarized with particular emphasis on critical properties at the quantum phase transitions. Most of the anomalous properties in the normal state of high-Tc cuprates are understood as due to the critical behaviours for the two dimensional antiferromagnetic metals. By analysing the nuclear magnetic relaxation rate and the T-linear term of resistivity, the set of parameters to specify the spin fluctuations are determined. It is shown that by using the parameters thus obtained one can describe other quantities as well, e.g. optical conductivity. Then we proceed to the theory of superconductivity by the spin fluctuation mechanism. After some discussion on the weak coupling treatments, the strong coupling theory is reviewed. It is shown that the set of parameters determined by the normal state properties of the high-T c cuprates just give a transition temperature of the right order of magnitude. Among the parameters, the most sensitive one for T c is the frequency spread of the spin fluctuations. This fact enables us to present a possible unified picture of the antiferromagnetic spin fluctuation-induced superconductors, including heavy fermion superconductors and organic superconductors. This point of view may be confirmed to a certain extent by microscopic calculations based on the fluctuation exchange approximation for the two-dimensional Hubbard models representing not only the cuprates but also organic and trellis lattice compounds. The review is concluded with some discussions on future problems, e.g. the pseudo spin-gap in the under-doped region.  相似文献   

12.
We derive spin operator matrix elements between general eigenstates of the superintegrable ℤ N -symmetric chiral Potts quantum chain of finite length. Our starting point is the extended Onsager algebra recently proposed by Baxter. For each pair of spaces (Onsager sectors) of the irreducible representations of the Onsager algebra, we calculate the spin matrix elements between the eigenstates of the Hamiltonian of the quantum chain in factorized form, up to an overall scalar factor. This factor is known for the ground state Onsager sectors. For the matrix elements between the ground states of these sectors we perform the thermodynamic limit and obtain the formula for the order parameters. For the Ising quantum chain in a transverse field (N=2 case) the factorized form for the matrix elements coincides with the corresponding expressions obtained recently by the Separation of Variables method.  相似文献   

13.
A new thermodynamic model is proposed in order to account for the high spin low spin conversion in metal-organic polymers. The model, based on the idea that the spin conversion occurs in interacting domains of like-spin metal ions, allows to explain most of the important features of various types of spin conversion. The sine qua non condition of the existence of spin transitions with hysteresis is obtained. In the case of very large cooperativity, the model predicts unusual behaviour of the spin conversion system due to a low-temperature metastable high spin state. Existence of such a state is interesting in the context of the light induced excited spin state trapping recently observed in some ferrous compounds. The model is applied to interpret the spin transition in polycrystalline ferrous polymer [Fe 1-y Cu y (Htrz)2 trz] (BF 4) with y = 0.00, 0.01 and 0.10, detected by differential scanning calorimetry, optical reflectivity and electron paramagnetic resonance. The domain size and the interaction energy between the domains are estimated as, respectively, n = 11 and for the y = 0 compound. As the copper content is growing, n and tend to decrease, resulting in transformations of the shape of hysteresis loop which becomes less steep, narrows and shifts to lower temperatures. The electron paramagnetic resonance gives further evidence of the presence of like-spin domains. Received 27 November 1998 and Received in final form 19 April 1999  相似文献   

14.
In this paper we find and present on diagrams in the coordinates of η=2t1/t0 (the ratio of the second and the first nearest neighbor hopping integrals) and n (the carrier concentration) the areas of stability for the superconducting spin-singlet s- and d-wave and the spin-triplet p-wave order parameters hatching out during the phase transition from the normal to the superconducting phase. The diagrams are obtained for an anisotropic two-dimensional superconducting system with a relatively wide partially-filled conduction band. We study a tight-binding model with an attractive nearest neighbor interaction with the amplitude V1, and the on-site interaction (with the amplitude V0) taken either as repulsive or attractive. The problem of the coexistence of the s-, p- and d-wave order parameters is addressed and solved for chosen values of the ratio V0/V1. A possible island of stability of the d-wave order parameter in the s-wave order parameter environment for a relatively strong on-site interaction is revealed. The triple points, around which the s-, d-, and p-wave order parameters coexist, are localized on diagrams. It is shown that results of the calculations performed for the two-dimensional tight-binding band model are dissimilar with some obtained within the BCS-type approximation.  相似文献   

15.
Abstract

Proton glasses are crystals of composition M1?x(NW4)xW2A04, where M = K,Rb,Cs, W = H,D, A = P, As. For x = 0 there is a ferroelectric (FE) transition, while for x-1 there is an antiferroelectric (AFE) transition. In both cases, the transition is from a paraelectric (PE) state of tetragonal structure with dynamically disordered hydrogen bonds to an ordered state of orthorhombic structure. For an intermediate x range there is no transition, but the hydrogen rearrangements slow down, and eventually display nonergodic behavior characteristic of glasses. We and others have shown from spontaneous polarization, dielectric permittivity, nuclear magnetic resonance, and neutron diffraction experiments that for smaller x there is coexistence of ferroelectric and paraelectric phases, and for larger × there is coexistence of antiferroelectric and paraelectric phases. We present a method for analytically describing this coexistence, and the degree to which this coexistence is spatial and/or temporal. We discuss also the experimental determination of these coexistence parameters.  相似文献   

16.
The coexistence of and transition between ferro- and antiferromagnetism in itinerant electron system are investigated by extending the spin fluctuation theory of ferromagnetic metals by Usami and Moriya. Calculation is made on a model density of states, which simulates the one for d metals with a body centered cubic crystal structure. The result shows that the wavevector-dependent susceptibility χq has a two peaks at q = 0 and q = Q for the suitable choice of parameters and the coexistence is realized when the amplitude of spin fluctuation takes a proper value. Paramagnetic susceptibility of this system is also discussed.  相似文献   

17.
Using electron spin resonance (ESR) technique we have obtained data evidencing the existence of magnetic vortices in high-temperature superconductors at temperatures above the critical one T c. We have studied magnetic excitations in Bi2Sr2Ca2Cu3O10 single crystals above T c with the method of surface spin decoration. The surface layer of diphenylpicrylhydrazyl was used as a sensitive probe of magnetic field distortions. The temperature dependence of the ESR signal parameters has indicated that far above T c the magnetic flux of a sample is affected by the superconducting order parameter fluctuations while close to T c its changes are due to vortex-type excitations.  相似文献   

18.
The spin flop phase transition is compared in K2FeF5 and K2Fe0.99Ga0.01F5 in terms of spin flop field, hysteresis and coexistence of phases.  相似文献   

19.
While the ferroelectricity in type-II multiferroic rare-earth manganites is believed to be generated by the inverse Dzyaloshinskii-Moriya (DM) interaction (spin-orbit coupling) associated with the Mn spiral spin order, recent results revealed the strong spin-lattice coupling arising from the Dy-Mn spin interaction in DyMnO3, which may also be an ingredient contributing to the ferroelectricity. In this work, we summarize our recent experiments on this issue by performing a series of rare-earth site nonmagnetic Y and magnetic Ho substitutions at Dy site for DyMnO3. It is demonstrated that the Dy-Mn spin interaction contributes to the ferroelectric polarization through the symmetric exchange striction mechanism (spin-lattice coupling). A coexistence of the spin-orbit coupling and spin-lattice coupling in one compound is confirmed. At the same time, the independent Dy antiferromagnetic spin order at low temperature can be effectively suppressed by the substitutions, beneficial to the polarization enhancement.  相似文献   

20.
This paper reports the excited quartet (S = 3/2) and quintet (S = 2) states arising from the intramolecular radical-triplet pair in the purely organic π conjugated spin systems. A previous paper reported the excited quartet and quintet states of 9-anthracene-(4-phenyliminonitroxide) and 9,10-anthracene-bis(4-phenyliminonitroxide), respectively, in which iminonitroxide radicals are linked to the phenyl- or diphenylanthracene moiety (a spin-coupler) through the π conjugation. The similar excited quartet and quintet states were observed for the 9-anthra-cene-(4-phenylverdazyl) radical (1) and 9,10-anthracene-bis(4-phenylverdazyl) diradical (2) by time resolved electron spin resonance (TRESR). The TRESR spectrum was analysed by the ordinary spin Hamiltonian with the Zeeman and fine structure terms. For the quartet state of 1, the g value, fine structure splitting, and relative population of the Ms sublevels have been determined to be g = 2.0035, D = 0.0230 cm?1, E = 0.0, P 1/2′ = P ?1/2′ = 0.5 and P 3/2′ = P ?3/2′ = 0.0, respectively, by spectral simulation. The spin Hamiltonian parameters of the quintet state of 2 were determined to be g = 2.0035, D = 0.0128 cm?1, E = 0.0, P 2′ = P ?2′ = 0.0, P 1′ = P ?1′ = 0.37 and P 0′ = 0.26, respectively. Direct observation of the excited high spin state showed that photoinduced intramolecular spin alignment is realized between the excited triplet state (S = 1) of the phenyl- or diphenylanthracene moiety and the doublet spin (S = 1/2) of the dangling verdazyl radicals. Ab initio MO calculations (DFT) were carried out in order to clarify the mechanism of the photoinduced spin alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号