首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extending the results of a previous work, we consider a class of discrete lattice gas models in a finite interval whose bulk dynamics consists of stochastic exchanges which conserve the particle number, and with stochastic dynamics at the boundaries chosen to model infinite particle reservoirs at fixed chemical potentials. We establish here the local equilibrium structure of the stationary measures for these models. Further, we prove as a law of large numbers that the time-dependent empirical density field converges to a deterministic limit process which is the solution of the initial-boundary value problem for a nonlinear diffusion equation.Supported in part by NSF Grants DMR89-18903 and INT85-21407. G.E. and H.S. also supported by the Deutsche Forschungsgemeinschaft  相似文献   

2.
A general theory is developed to study individual based models which are discrete in time. We begin by constructing a Markov chain model that converges to a one-dimensional map in the infinite population limit. Stochastic fluctuations are hence intrinsic to the system and can induce qualitative changes to the dynamics predicted from the deterministic map. From the Chapman–Kolmogorov equation for the discrete-time Markov process, we derive the analogues of the Fokker–Planck equation and the Langevin equation, which are routinely employed for continuous time processes. In particular, a stochastic difference equation is derived which accurately reproduces the results found from the Markov chain model. Stochastic corrections to the deterministic map can be quantified by linearizing the fluctuations around the attractor of the map. The proposed scheme is tested on stochastic models which have the logistic and Ricker maps as their deterministic limits.  相似文献   

3.
The Lorentz process is the stochastic process defined by a particle moving, according to Newton's law of motion, through static scatterers distributed according to some probability measure in space. We consider the Boltzmann-Grad limit: The density of scatterers increases to infinity and at the same time the diameter of the scatterers decreases to zero in such a way that the mean free path of the particle is kept constant. We show that the Lorentz process converges in the weak*-topology of regular Borel measures on the paths space to some stochastic process. The limit process is Markovian if and only if the rescaled density of scatterers converges in probability to its mean. In that case the limit process is a (spatially inhomogeneous) random flight process.On leave of absence of Fachbereich Physik der Universität München. Work supported by a DFG fellowship  相似文献   

4.
We study the dynamics of geometric spin system on the torus with long-range interaction. As the number of particles goes to infinity, the process converges to a deterministic, dynamical magnetization field that satisfies an Euler equation (law of large numbers). Its stable steady states are related to the limits of the equilibrium measures (Gibbs states) of the finite particle system. A related equation holds for the magnetization densities, for which the property of propagation of chaos also is established. We prove a dynamical central limit theorem with an infinite-dimensional Ornstein-Uhlenbeck process as a limiting fluctuation process. At the critical temperature of a ferromagnetic phase transition, both a tighter quantity scaling and a time scaling is required to obtain convergence to a one-dimensional critical fluctuation process with constant magnetization fields, which has a non-Gaussian invariant distribution. Similarly, at the phase transition to an antiferromagnetic state with frequencyp 0, the fluctuation process with critical scaling converges to a two-dimensional critical fluctuation process, which consists of fields with frequencyp 0 and has a non-Gaussian invariant distribution on these fields. Finally, we compute the critical fluctuation process in the infinite particle limit at a triple point, where a ferromagnetic and an antiferromagnetic phase transition coincide.Work supported by Deutsche Forschungsgemeinschaft  相似文献   

5.
We consider a chain of N harmonic oscillators perturbed by a conservative stochastic dynamics and coupled at the boundaries to two gaussian thermostats at different temperatures. The stochastic perturbation is given by a diffusion process that exchange momentum between nearest neighbor oscillators conserving the total kinetic energy. The resulting total dynamics is a degenerate hypoelliptic diffusion with a smooth stationary state. We prove that the stationary state, in the limit as N→ ∞, satisfies Fourier’s law and the linear profile for the energy average  相似文献   

6.
We consider transport diffusion in a stochastic billiard in a random tube which is elongated in the direction of the first coordinate (the tube axis). Inside the random tube, which is stationary and ergodic, non-interacting particles move straight with constant speed. Upon hitting the tube walls, they are reflected randomly, according to the cosine law: the density of the outgoing direction is proportional to the cosine of the angle between this direction and the normal vector. Steady state transport is studied by introducing an open tube segment as follows: We cut out a large finite segment of the tube with segment boundaries perpendicular to the tube axis. Particles which leave this piece through the segment boundaries disappear from the system. Through stationary injection of particles at one boundary of the segment a steady state with non-vanishing stationary particle current is maintained. We prove (i) that in the thermodynamic limit of an infinite open piece the coarse-grained density profile inside the segment is linear, and (ii) that the transport diffusion coefficient obtained from the ratio of stationary current and effective boundary density gradient equals the diffusion coefficient of a tagged particle in an infinite tube. Thus we prove Fick’s law and equality of transport diffusion and self-diffusion coefficients for quite generic rough (random) tubes. We also study some properties of the crossing time and compute the Milne extrapolation length in dependence on the shape of the random tube.  相似文献   

7.
We discuss the dynamics of zonal (or unidirectional) jets for barotropic flows forced by Gaussian stochastic fields with white in time correlation functions. This problem contains the stochastic dynamics of 2D Navier-Stokes equation as a special case. We consider the limit of weak forces and dissipation, when there is a time scale separation between the inertial time scale (fast) and the spin-up or spin-down time (large) needed to reach an average energy balance. In this limit, we show that an adiabatic reduction (or stochastic averaging) of the dynamics can be performed. We then obtain a kinetic equation that describes the slow evolution of zonal jets over a very long time scale, where the effect of non-zonal turbulence has been integrated out. The main theoretical difficulty, achieved in this work, is to analyze the stationary distribution of a Lyapunov equation that describes quasi-Gaussian fluctuations around each zonal jet, in the inertial limit. This is necessary to prove that there is no ultraviolet divergence at leading order, in such a way that the asymptotic expansion is self-consistent. We obtain at leading order a Fokker–Planck equation, associated to a stochastic kinetic equation, that describes the slow jet dynamics. Its deterministic part is related to well known phenomenological theories (for instance Stochastic Structural Stability Theory) and to quasi-linear approximations, whereas the stochastic part allows to go beyond the computation of the most probable zonal jet. We argue that the effect of the stochastic part may be of huge importance when, as for instance in the proximity of phase transitions, more than one attractor of the dynamics is present.  相似文献   

8.
Stochastic lattice gases with degenerate rates, namely conservative particle systems where the exchange rates vanish for some configurations, have been introduced as simplified models for glassy dynamics. We introduce two particular models and consider them in a finite volume of size in contact with particle reservoirs at the boundary. We prove that, as for non-degenerate rates, the inverse of the spectral gap and the logarithmic Sobolev constant grow as 2. It is also shown how one can obtain, via a scaling limit from the logarithmic Sobolev inequality, the exponential decay of a Lyapunov functional for a degenerate parabolic differential equation (porous media equation). We analyze finally the tagged particle displacement for the stationary process in infinite volume. In dimension larger than two we prove that, in the diffusive scaling limit, it converges to a Brownian motion with non-degenerate diffusion coefficient.  相似文献   

9.
The stochastic limit of a free particle coupled to the quantum electromagnetic field without dipole approximation leads to many new features such as: interacting Fock space, Hilbert module commutation relations, disappearance of the crossing diagrams, etc. In the present paper we begin to study how the situation is modified if a free particle is replaced by a particle in a potential which is the Fourier transform of a bounded measure.We prove that the stochastic limit procedure converges and that the overall picture is similar to the free case with the important difference that the structure of the limit Hilbert module is strongly dependent on the wave operator of the particle.  相似文献   

10.
We introduce a simple model which shows non-trivial self organized critical properties. The model describes a system of interacting units, modelled by Polya urns, subject to perturbations and which occasionally break down. Three equivalent formulations - stochastic, quenched and deterministic - are shown to reproduce the same dynamics. Among the novel features of the model are a non-homogeneous stationary state, the presence of a non-stationary critical phase and non-trivial exponents even in mean field. We discuss simple interpretations in term of biological evolution and earthquake dynamics and we report on extensive numerical simulations in dimensions d=1,2 as well as in the random neighbors limit. Received: 18 February 1998 / Revised: 20 March 1998 / Accepted: 29 March 1998  相似文献   

11.
Consider an infinite system of particles evolving in a one dimensional lattice according to symmetric random walks with hard core interaction. We investigate the behavior of a tagged particle under the action of an external constant driving force. We prove that the diffusively rescaled position of the test particle εX-2 t), t > 0, converges in probability, as ε→ 0, to a deterministic function v(t). The function v(⋅) depends on the initial distribution of the random environment through a non-linear parabolic equation. This law of large numbers for the position of the tracer particle is deduced from the hydrodynamical limit of an inhomogeneous one dimensional symmetric zero range process with an asymmetry at the origin. An Einstein relation is satisfied asymptotically when the external force is small. Received: 5 December 1996 / Accepted: 30 June 1997  相似文献   

12.
We present a general mathematical framework for constructing deterministic models of simple chemical reactions. In such a model, an underlying dynamical system drives a process in which a particle undergoes a reaction (changes color) when it enters a certain subset (the catalytic site) of the phase space and (possibly) some other conditions are satisfied. The framework we suggest allows us to define the entropy of reaction precisely and does not rely, as was the case in previous studies, on a stochastic mechanism to generate additional entropy. Thus our approach provides a natural setting in which to derive macroscopic chemical reaction laws from microscopic deterministic dynamics without invoking any random mechanisms.  相似文献   

13.
We introduce jump processes in ℝ k , called density-profile processes, to model biological signaling networks. Our modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. We are mostly interested on the multi-dimensional empirical-magnetization vector in the thermodynamic limit, and prove that, within arbitrary finite time-intervals, its path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation with explicit bounds on the distance between the stochastic and deterministic trajectories. As parameters of the spin-flip dynamics change, the associated dynamical system may go through bifurcations, associated to phase transitions in the statistical mechanical setting. We present a simple example of spin-flip stochastic model, associated to a synthetic biology model known as repressilator, which leads to a dynamical system with Hopf and pitchfork bifurcations. Depending on the parameter values, the magnetization random path can either converge to a unique stable fixed point, converge to one of a pair of stable fixed points, or asymptotically evolve close to a deterministic orbit in ℝ k . We also discuss a simple signaling pathway related to cancer research, called p53 module.  相似文献   

14.
We consider a lattice gas interacting by the exclusion rule in the presence of a random field given by i.i.d. bounded random variables in a bounded domain in contact with particles reservoir at different densities. We show, in dimensions d≥3, that the rescaled empirical density field almost surely, with respect to the random field, converges to the unique weak solution of a quasilinear parabolic equation having the diffusion matrix determined by the statistical properties of the external random field and boundary conditions determined by the density of the reservoir. Further we show that the rescaled empirical density field, in the stationary regime, almost surely with respect to the random field, converges to the solution of the associated stationary transport equation.  相似文献   

15.
We set up a classical stochastic model for the irreversible dynamics of a lattice gas under gravity. We show that for a class of initial states the system converges to equilibrium, which obeys the laws of thermostatics.Dedicated to Oliver Penrose.  相似文献   

16.
We consider a physical system with a coupling to bosonic reservoirs via a quantum stochastic differential equation. We study the limit of this model as the coupling strength tends to infinity. We show that in this limit the solution to the quantum stochastic differential equation converges strongly to the solution of a limit quantum stochastic differential equation. In the limiting dynamics the excited states are removed and the ground states couple directly to the reservoirs.  相似文献   

17.
We prove that the motion of a test particle in a hard sphere fluid in thermal equilibrium converges, in the Boltzmann-Grad limit, to the stochastic process governed by the linear Boltzmann equation. The convergence is in the sense of weak convergence of the path measures. We use this result to study the steady state of a binary mixture of hard spheres of different colors (but equal masses and diameters) induced by color-changing boundary conditions. In the Boltzmann-Grad limit the steady state is determined by the stationary solution of the linear Boltzmann equation under appropriate boundary conditions.Supported in part by NSF Grant No. PHY 78-15920-02.Supported by a Heisenberg Fellowship of the Deutsche Forschungsgemeinschaft.  相似文献   

18.
We consider lattice gas diffusive dynamics with creation-annihilation in the bulk and maintained out of equilibrium by two reservoirs at the boundaries. This stochastic particle system can be viewed as a toy model for granular gases where the energy is injected at the boundary and dissipated in the bulk. The large deviation functional for the particle currents flowing through the system is computed and some physical consequences are discussed: the mechanism for local current fluctuations, dynamical phase transitions, the fluctuation-relation.  相似文献   

19.
20.
We analyze general two-species stochastic models, of the kind generally used for the study of population dynamics. Although usually defined a priori, the deterministic version of these models can be obtained as the infinite volume limit of many stochastic models (which are necessarily defined by more parameters than the deterministic one). It is known that damped oscillations in a deterministic model usually correspond to oscillatory-like fluctuations in their deterministic counterparts. The quality of these “oscillations" depends on details of each stochastic model. We show, however, that the parameters of the deterministic system are generally enough to obtain very good bounds for the quality of “oscillations" in any of its stochastic counterparts. These bounds are shown to depend on only one dimensionless parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号