首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

2.
Based on stress field equations and Hill yield criterion, the crack tip plastic zone is determined for orthotropic materials and isotropic materials under small-scale yielding condition. An analytical solution to calculating the crack tip plastic zone in plane stress states is presented. The shape and size of the plastic zone are analyzed under different loading conditions. The obtained results show that the crack tip plastic zones present “butterfly-like” shapes, and the elastic–plastic boundary is smooth. The size of the plastic zone for orthotropic composites is less at the crack tip for various loading conditions, compared with the case of isotropic materials. Crack inclination angle and loading conditions affect greatly the size and shape of crack tip plastic zone. The mode I crack has a crucial effect on the plastic zone for mixed mode case in plane stress state. The plastic zone for pure mode I crack and pure mode II crack have a symmetrical distribution to the initial crack plane.  相似文献   

3.
The plane-stress state of a cracked continuous medium in tension is determined using relaxation elements. The stress state is analyzed at the tip of a crack surrounded by a plastically deformed material as a band of localized plastic deformation (LPD) shaped like an elongated ellipse. The plastic deformation considerably decreases the stress concentration at the crack tip. As the localization of the plastic deformation increases, the stresses at the crack sides decrease to zero. The decrease in stresses at the tip is accompanied by an increase in the concentration and gradients of the stresses at the end of theLPD band. Here the region of perturbation of the stress field is comparable with the width of the band. Institute of Physics of Strength and Materials Science, Tomsk 634055. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 132–141, November–December, 1998.  相似文献   

4.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

5.
The influence of inertia on the stress and deformation fields near the tip of a crack growing in an elastic-plastic material is studied. The material is characterized by the von Mises yield criterion and J2 flow theory of plasticity. The crack grows steadily under plane strain conditions in the tensile opening mode. Features of the stress and deformation state at points near the moving crack tip are described for elastic-perfectly plastic response and for several crack propagation speeds. It is found that inertia has a significant effect on the elastic-plastic response of material particles near the crack tip, and that elastic unloading may occur behind the crack tip for higher speeds. The relationship between the applied crack driving force, represented by a remote stress intensity factor, and the crack tip speed is examined on the basis of a critical crack tip opening angle growth criterion. The calculated result is compared with dynamic fracture toughness versus crack speed data for a 4340 steel.  相似文献   

6.
Steady state crack propagation problems of elastic-plastic materials in Mode I, plane strain under small scale yielding conditions were investigated with the aid of the finite element method. The elastic-perfectly plastic solution shows that elastic unloading wedges subtended by the crack tip in the plastic wake region do exist and that the stress state around the crack tip is similar to the modified Prandtl fan solution. To demonstrate the effects of a vertex on the yield surface, the small strain version of a phenomenological J2, corner theory of plasticity (Christoffersen, J. and Hutchinson, J. W. J. Mech. Phys. Solids,27, 465 C 1979) with a power law stress strain relation was used to govern the strain hardening of the material. The results are compared with the conventional J2 incremental plasticity solution. To take account of Bauschinger like effects caused by the stress history near the crack tip, a simple kinematic hardening rule with a bilinear stress strain relation was also studied. The results are again compared with the smooth yield surface isotropic hardening solution for the same stress strain curve. There appears to be more potential for steady state crack growth in the conventional J2 incremental plasticity material than in the other two plasticity laws considered here if a crack opening displacement fracture criterion is used. However, a fracture criterion dependent on both stress and strain could lead to a contrary prediction.  相似文献   

7.
唐立强  黄克智 《力学学报》1991,23(4):448-457
在本文中,以 Hill 的塑性理论为基础,详细地讨论了理想正交各向异性弹塑性材料,平面应力条件下Ⅰ型静止裂纹尖端场解。裂纹尖端应力场不包含应力间断线,但包含弹性区。分析的结果表明(i)对于平面应力静止裂纹问题,应力场解不是唯一的,场解中的自由参数必须由远场条件来确定。(ii)裂纹尖端的应力、应变的奇异性,无论是各向异性材料还是各向同性材料,都是相同的。但在各向异性材料中,各向异性参数影响着应力、应变的幅度和分布。  相似文献   

8.
An asymptotic crack-tip analysis of stress and strain fields is carried out for an antiplane shear crack (Mode III) based on a corner theory of plasticity. Because of the nonproportional loading history experienced by a material element near the crack tip in stable crack growth, classical flow theory may predict an overly stiff response of the elastic plastic solid, as is the case in plastic buckling problems. The corner theory used here accounts for this anomalous behavior. The results are compared with those of a similar analysis based on the J2 flow theory of plasticity.  相似文献   

9.
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom ωi are introduced in addition to the conventional three translational degrees of freedom ui. ωi is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l1. Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale.  相似文献   

10.
The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.  相似文献   

11.
The trajectory of a crack lying parallel to a thin graded layer between two plastically dissimilar materials is studied using the exclusion region (ER) theory of fracture. The ER theory is a theoretical framework for surface separation within which a broad range of fracture phenomenologies can be represented. In the present study, the direction of crack advance is determined by maximizing the resolved normal-opening force on the near-tip region, whereas separation itself is governed by the intensity of plastic deformation near the tip. A computational study was undertaken using the ER theory. The special-purpose finite element analysis platform accommodates arbitrary––and a priori unknown––crack trajectories. The model problem considered herein involves two plastically dissimilar, but elastically identical, materials joined by a thin, graded interface layer. The initial crack lies parallel to the interface layer, and crack advance occurs under conditions of extensive plastic flow. It is found that the position of the initial crack relative to the interface layer has a strong influence on the fracture behavior. In general, the crack trajectories tend to curve toward the less-ductile material. Also, the presence of the interface layer leads to fracture toughnesses that significantly exceed those of either material individually for the configurations studied.  相似文献   

12.
The fracture problems near the interface crack tip for mode Ⅱ of double dissimilar orthotropic composite materials are studied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized bi-harmonic equations,the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions,a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about himaterial engineering parameters. According to the uniqueness theorem of limit,both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same,the stress singularity exponents,stress intensity factors and stresses for mode Ⅱ crack of the orthotropic single material are obtained.  相似文献   

13.
The crack-tip stress fields in orthotropic bodies are derived within the framework of Eringen’s nonlocal elasticity via the Green’s function method. The modified Bessel function of second kind and order zero is considered as the nonlocal kernel. We demonstrate that if the localisation residuals are neglected, as originally proposed by Eringen, the asymptotic stress tensor and its normal derivative are continuous across the crack. We prove that the stresses attained at the crack tip are finite in nonlocal orthotropic continua for all the three fracture modes (I, II and III). The relative magnitudes of the stress components depend on the material orthotropy. Moreover, non-zero self-balanced tractions exist on the crack edges for both isotropic and orthotropic continua. The special case of a mode I Griffith crack in a nonlocal and orthotropic material is studied, with the inclusion of the T-stress term.  相似文献   

14.
The tendency of moving cracks to spread along the preferred directions of material anisotropy is treated. Depending on the velocity of crack propagation, the change of material properties in orthogonal planes is shown to affect the bifurcation characteristics. The problem is reduced to a system of dual integral equations that can be solved in a standard fashion. Of particular interest is the dynamic stress field near the tip of a moving crack in an orthotropic material. Although the 1√r stress singularity is preserved with r being the radial distance measured from the crack tip, the angular variations of the stresses are dependent on crack speed and material anisotropy. The possibility of crack bifurcation is examined by application of the strain energy density criterion for several composite systems. Crack branching is found to be enhanced by material anisotropy, a phenomenon that is not uncommon in composite materials.  相似文献   

15.
Fracture toughness of metals depends strongly on the state of stress near the crack tip. The existing standards (like R-6, SINTAP) are being modified to account for the influence of stress triaxiality in the flaw assessment procedures. These modifications are based on the ability of so-called ‘constraint parameters’ to describe near tip stresses. Crack tip stresses in homogeneous fracture specimens are successfully described in terms of two parameters like JQ or JT. For fracture specimens having a weld center crack, strength mismatch ratio between base and weld material and weld width are the additional variables, along with the magnitude of applied loading, type of loading, and geometry of specimen that affect the crack tip stresses. In this work, a novel three-parameter scheme was proposed to estimate the crack tip opening stress accounting for the above-mentioned variables. The first and second parameters represent the crack tip opening stress in a homogeneous fracture specimen under small-scale yielding and are well known. The third parameter accounts for the effect of constraint developed due to weld strength mismatch. It comprises of weld strength mismatch ratio (M, i.e. ratio of yield strength of weld material to that of base material), and a plastic interaction factor (Ip) that scales the size of the plastic zone with the width of the weld material. The plastic interaction factor represents the degree of influence of weld strength mismatch on crack tip constraint for a given mismatch ratio. The proposed scheme was validated with detailed FE analysis using the Modified Boundary Layer formulation.  相似文献   

16.
Asymptotic singular solutions of the HRR type are presented for anti-plane shear cracks in ductile crystals. These are assumed to undergo Taylor hardening with a power-law relation between stress and strain at sufficiently large strain. Results are given for several crack orientations in fcc and bcc crystals. The neartip region divides into angular sectors which are the maps of successive flat segments and vertices on the yield locus. Analysis is simplified by use of new general integrals of crack tip singular fields of the HRR type. It is conjectured that the single crystal HRR fields are dominant only over part of the plastic region immediately adjacent to the crack tip, even at small scale yielding, and that their domain of validity vanishes as the perfectly plastic limit is approached. This follows from the fact that while in the perfectly plastic limit the HRR stress states approach the correct discontinuous distributions of the complete elasticideally plastic solutions for crystals (Rice and Nikolic, J. Mech. Phys. Solids33, 595 (1985)), the HRR displacement fields in that limit remain continuous. Instead, the complete elastic-ideally plastic solutions have discontinuous displacements along planar plastic regions emanating from the tip in otherwise elastically stressed material. The approach of the HRR stress fields to their discontinuous limiting distributions is illustrated in graphical plots of results. A case examined here of a fcc crystal with a crack along a slip plane is shown to lead to a discontinuous near-tip stress state even in the hardening regime.Through another limiting process, the asymptotic solution for the near-tip field for an isotropic material is also derived from the present single crystal framework.  相似文献   

17.
The problem of a stationary semi-infinite crack in an elastic solid with microstructures subject to remote classical KIII field is investigated in the present work. The material behavior is described by the indeterminate theory of couple stress elasticity developed by Koiter. This constitutive model includes the characteristic lengths in bending and torsion and thus it is able to account for the underlying microstructure of the material as well as for the strong size effects arising at small scales. The stress and displacement fields turn out to be strongly influenced by the ratio between the characteristic lengths. Moreover, the symmetric stress field turns out to be finite at the crack tip, whereas the skew-symmetric stress field displays a strong singularity. Ahead of the crack tip within a zone smaller than the characteristic length in torsion, the total shear stress and reduced tractions occur with the opposite sign with respect to the classical LEFM solution, due to the relative rotation of the microstructural particles currently at the crack tip. The asymptotic fields dominate within this zone, which however has limited physical relevance and becomes vanishing small for a characteristic length in torsion of zero. In this limiting case the full-field solution recovers the classical KIII field with square-root stress singularity. Outside the zone where the total shear stress is negative, the full-field solution exhibits a bounded maximum for the total shear stress ahead of the crack tip, whose magnitude can be adopted as a measure of the critical stress level for crack advancing. The corresponding fracture criterion defines a critical stress intensity factor, which increases with the characteristic length in torsion. Moreover, the occurrence of a sharp crack profile denotes that the crack becomes stiffer with respect to the classical elastic response, thus revealing that the presence of microstructures may shield the crack tip from fracture.  相似文献   

18.
Two systems of non-homogeneous linear equations with 8 unknowns are obtained.This is done by introducing two stress functions containing 16 undetermined coefficients and two real stress singularity exponents with the help of boundary conditions.By solving the above systems of non-homogeneous linear equations,the two real stress singularity exponents can be determined when the double material parameters meet certain conditions.The expression of the stress function and all coefficients are obtained based on the uniqueness theorem of limit.By substituting these parameters into the corresponding mechanics equations,theoretical solutions to the stress intensity factor,the stress field and the displacement field near the crack tip of each material can be obtained when both discriminants of the characteristic equations are less than zero.Stress and displacement near the crack tip show mixed crack characteristics without stress oscillation and crack surface overlapping.As an example,when the two orthotropic materials are the same,the stress singularity exponent,the stress intensity factor,and expressions for the stress and the displacement fields of the orthotropic single materials can be derived.  相似文献   

19.
The asymptotic fields near the tip of a crack steadily propagating in a ductile material under Mode III loading conditions are investigated by adopting an incremental version of the indeterminate theory of couple stress plasticity displaying linear and isotropic strain hardening. The adopted constitutive model is able to account for the microstructure of the material by incorporating two distinct material characteristic lengths. It can also capture the strong size effects arising at small scales, which results from the underlying microstructures. According to the asymptotic crack tip fields for a stationary crack provided by the indeterminate theory of couple stress elasticity, the effects of microstructure mainly consist in a switch in the sign of tractions and displacement and in a substantial increase in the singularity of tractions ahead of the crack-tip, with respect to the classical solution of LEFM and EPFM. The increase in the stress singularity also occurs for small values of the strain hardening coefficient and is essentially due to the skew-symmetric stress field, since the symmetric stress field turns out to be non-singular. Moreover, the obtained results show that the ratio η introduced by Koiter has a limited effect on the strength of the stress singularity. However, it displays a strong influence on the angular distribution of the asymptotic crack tip fields.  相似文献   

20.
本文分别采用激光和白光DSCM(数字散斑相关测量)方法对一种新型各向异性核工业石墨的裂纹尖端位移、应变场进行了实验研究,两种方法都取得了较好的结果。考虑核工业石墨制备过程形成的各向异性特点,本文构建了三维各向异性有限元模型,采用奇异单元,计算模拟石墨裂纹尖端的变形和应力场,通过对实验结果和有限元计算结果的比较可以发现两者具有相近的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号