首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vortex dynamics and the sound generation by an inviscid vortex in the presence of a finite length porous material on an otherwise rigid plane are studied numerically in the present study in an attempt to understand the sound generation near the surface of a wall lining in a lined duct. The combined effects of the effective fluid density and flow resistance inside the porous material, and the length and thickness of the porous material on the sound generation process are examined in detail. Results obtained demonstrate the sound pressure is longitudinal dipole and show how seriously the above-mentioned parameters are affecting the vortex sound pressure under the influence of the porous material.  相似文献   

2.
Results are presented of an investigation into the sound intensity distribution in a ventilation duct splitter silencer subject to plane waves incident in the axial direction, under conditions of zero flow. A theory is developed which accounts for the generation of nonplane fields at the cross-sectional discontinuities of the duct-silencer-duct system. A local reaction model of the splitter material is employed, and analytical solutions and numerical results are presented for the sound intensity distribution within the silencer. Experiments were conducted to measure the distribution of sound intensity in a silencer subject to incident plane waves. The conventional cross-spectral method of measuring sound intensity could not be used because of the practical difficulties in manoeuvring the two-microphone assembly through the narrow air passage and obtaining measurements at positions close to the wall of the splitters. Instead, a modified cross-spectral method was devised which employs only one microphone for measurement. In this method, the transfer functions between the loudspeaker input signal and the microphone output signal were measured at an array of microphone positions within the air passages of the silencer. The divergence equation for sound intensity was employed to infer transverse intensity distributions from the computed axial distribution. Reasonable qualitative agreement is obtained between theoretical and observed sound intensity distribution, but the local reaction model of the splitter is found not to be satisfactory at the lower frequencies.  相似文献   

3.
A theoretical model is proposed for describing the drift of a 180° domain wall in a weak ferromagnet in the field of elastic stresses produced by a strong sound wave propagating in the plane of the wall. The dependence of the drift velocity on the frequency, amplitude, and polarization of the sound wave is found. It is predicted that drift of a striped domain structure is possible.  相似文献   

4.
Three different wall sections with step shape were applied in the finite element analysis models set up to investigate the effect on low frequency sound field by wall modification. The heights of the step in three cases are taken as equal, random and optimized. The optimized value is obtained by using an optimization process with an objective function of minimum fluctuation in sound field. The frequency responses of rooms with original and modified walls were calculated in a range from 60 Hz to 120 Hz. The results showed that the room with an optimized wall section had the flattest frequency response. Same thing was true as the ratio of the room was changed. The largest improvement on fluctuation reached 4.5 dB. In addition, wall section with semicircle and triangle were studied. The rooms that wall section had optimized radius and heights also gave a better performance than those that had fixed radius and heights. Therefore, it is possible to use optimized wall section to improve low frequency sound field.  相似文献   

5.
The laws of sound decay in a cubic room, one wall of which is absorbing and the other scattering, are obtained. It is shown that under certain conditions, sound decay in a room occurs nonexponentially and the shape of the decay curve depends on the scattering coefficient of the walls. This makes it possible to suggest a method for measuring the scattering coefficient by the analysis the decay curve when the walls have sound-scattering materials and structures. Expressions are obtained for approximating the measured decay curve, and the boundaries of the method’s applicability are determined.  相似文献   

6.
The sound generated by the unsteady motion of a vortex filament moving over a flat boundary with a sharp flow impedance discontinuity is studied theoretically. Theoretical results show that the vortex filament undergoes significant accelerating or decelerating motions and radiates sound at the instant when it moves across the plane of impedance discontinuity. The accelerations and decelerations of the vortex filament are shown to be the major mechanisms of sound generation. The sound so produced has a large low-frequency content such that the change in the flow impedance affects only the sound generation process but not the subsequent sound propagation to the far field.  相似文献   

7.
The objective of this paper is to propose a practical impedance tube method to optimize the sound transmission loss of double wall structure by concentrating on the sound package placed inside the structure. In a previous work, the authors derived an expression that breakdown the transmission loss of a double wall structure containing a sound absorbing blanket separated from the panels by air layers in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The sound transmission loss contributions of the blanket can thus be estimated from three acoustic measurements using impedance tube techniques: two reflection coefficients at the front face and the rear face of the blanket placed in specific positions characteristic of its position inside the double wall structure and its sound transmission coefficient. The method is first validated in the case of a double wall structure filled with a 2 in. foam material. Next, it is applied to investigate (i) the effect of frame compression of a 2 in. fibre glass in an aeronautic-type double wall structure and (ii) the effect of double porosity with or without porous inclusions in a building-type double wall structure.  相似文献   

8.
I.IntroductionInmanycasesthecontinuityofsoundpropagationwithinatubeisbrokenbyaperturesonthetubewallsuchastoneholesonthemainboreofwoodwindmusicalinstruments,rectangularsound-windowofChineseinstrumentshengetc.Thediscontinuityhaseffectonwavccncoun-tCringit.Keefestudicdasing1etoneholeofwoodwindinstrumentandrepresenteditbyaT-sectionequiva1entcirc.it[11.Inthispaper,theapertureontubewa1lisstudiedfromdifferentpointofview,a1thoughtheGreen'sfunctionmethodisalsousedinthetheoreticalana1ysis.Moresimp1er…  相似文献   

9.
Pressure oscillations in a sound wave are accompanied by temperature oscillations. In the presence of a solid boundary, the heat transfer from the oscillating gas to the solid boundary causes dissipation of the acoustic energy. This results in the attenuation of the sound wave. This thermal-relaxation dissipation process has a negative effect on the performance of thermoacoustic heat pumps and engines. A simple analytical model describing the interaction between an acoustic wave and a solid boundary is presented. The effect of the solid material and gas type on thermal-relaxation dissipation is analysed. The main result of this model is that the choice of a solid material with the smallest possible heat capacity per unit area in combination with a gas with the largest possible heat capacity per unit area minimises the thermal-relaxation dissipation. From the different combinations solid-gas used in the calculations, the combination cork-helium leads to the lowest thermal attenuation of the sound wave. In this case, the heat transfer from the gas to the wall less damps the temperature oscillations. However, because of the porosity of cork that may cause some problems, it is suggested that the combination polyester-helium can be used in practice to minimise the thermal-relaxation losses.  相似文献   

10.
The possibility of using a vertical array for the generation of a narrow wave beam that propagates in the underwater sound channel along a given reference ray is discussed. The variational problem of choosing the initial field at the array aperture to provide the minimal possible average beam width along the propagation path of a fixed length is solved.  相似文献   

11.
Strong absorption of sound is often caused by the conversion of sound energy into heat. When this happens, it is not possible to study the interaction of sound with the absorbing material by means of reflected sound characteristics, because there is no reflected sound. Detecting for example the distance that sound travels in a strongly absorbing material, can be done by heat detection systems. However, the presence of temperature detectors in such materials interferes with the sound field and is therefore not really suitable. Infrared measurements are a possible option. Another option is the use of Schlieren photography for simultaneous visualization of sound and heat. This technique is briefly outlined with a 3 MHz sound beam incident on a highly absorbing sponge.  相似文献   

12.
The sound generated by a vortex propagating across a two-dimensional duct section with flexible walls (membranes) in an infinitely long rigid duct conveying a flow is investigated numerically using the matched asymptotic expansion technique and the potential theory. The effects of the initial vortex position, the mechanical properties of the flexible walls, and the mean flow on the sound generation are examined in detail. Results show that the presence of a vortex inside a uniform mean flow can strengthen or attenuate the sound generation, depending on the phase of the membrane vibration when the vortex starts vigorous interaction with the membranes and the strength of the mean flow. The results tend to imply that there is a higher chance of sound amplification when a vortex stream is moving closer to the lighter membrane under a relatively strong mean flow or when the mean flow is weak. The chances of sound amplification or attenuation are equal otherwise.  相似文献   

13.
The problem of sound decay in a rectangular room is considered for the case of a room with walls the acoustic properties of which are described by the impedance, which implies a dependence of the absorption coefficient on the angle of incidence of sound waves. The ray approximation is used to determine the sound decay laws for different distributions of wall absorption. It is shown that, in a room with impedance walls, the sound decay is slower than in the conventional reverberation model, in which the wall absorption coefficient is independent of the angle of incidence. The problem is also solved in the wave approximation to determine the decay law for a preset frequency band.  相似文献   

14.
The objective of the present study is to investigate and quantify how sensitive the response of an aircraft panel is to the change of the turbulent flow parameters. Several empirical models currently exist that provide the turbulent boundary layer wall pressure cross spectrum. These wall pressure cross spectrum models are usually dependent on four parameters: the reference power spectrum, the flow convective velocity, and the coherence lengths in streamwise and spanwise directions. All the proposed models provide different predictions for the wall pressure cross spectrum. Also, real flow conditions over aircraft do not conform to the ideal behavior of the turbulent boundary layer pressure predicted by the models. In this context, the questions that this work aims to explore are “What is the impact of different wall pressure estimates in the radiated sound power?” and “What is the effect of the range of possible flow conditions on the radiated sound power?”. For that objective, data from flight tests and estimates provided by the empirical models are used to predict radiated sound power, and the results are compared. A sensitivity analysis is performed and the relative contribution of each boundary layer parameter to the radiated sound power is obtained.  相似文献   

15.
住宅建筑中相邻房间的侧向传声预测   总被引:1,自引:0,他引:1       下载免费PDF全文
黄险峰  杨宗筱 《声学学报》2018,43(2):253-262
侧向传声作为建筑中声传递的组成部分,对住宅的整体隔声效果具有重要的影响,通过将建筑中相邻房间的各建筑构件划分为若干子系统,应用统计能量分析(Statistical Energy Analysis,SEA)理论,从系统的声功率平衡的角度建立侧向传声的预测模型,在描述各路径的传声规律的同时确定主要传声路径。研究结果表明:当外围护结构为重质结构,且为匀质单一材料构造时,(1)在低频处,全程通过两相邻房间的侧墙或楼板的非通过隔墙的侧向路径成为主要侧向传声路径;(2)在中高频,各侧向路径的声压级差趋于一致,此时的建筑隔声性能取决于通过隔墙的直接路径上的声传递;(3)采用重质隔墙可以缩小侧向传声影响的频率范围。本研究为改善住宅的声环境质量及建筑隔声设计提供了理论依据。   相似文献   

16.
建立了含次级源结构的充液直管有源消声系统数值模型,重点分析了声激励下次级源近场和管壁弹性对有源消声性能的影响。结果表明:次级源近场为非均匀声场,误差点位于该区域时部分频点控制效果较差甚至放大,而处于声场均匀区域时可使降噪量提高10 dB以上,增加误差点数量可使绝大多数频点的降噪量提高5 dB以上;管壁弹性使次级源与管壁间的耦合较强,非对称分布的次级源容易激起管壁振动,导致降噪谷值的出现,采用对称分布的次级源可显著提升控制效果;增加次级源数量能够提高系统的有源无源复合控制效果,但使得管内声场变得复杂,多次级源模型的有源消声效果随频率升高而有所降低。  相似文献   

17.
The statistical behaviours of different entropy generation mechanisms in the head-on interaction of turbulent premixed flames with a chemically inert wall within turbulent boundary layers have been analysed using Direct Numerical Simulation data. The entropy generation characteristics in the case of head-on premixed flame interaction with an isothermal wall is compared to that for an adiabatic wall. It has been found that entropy generation due to chemical reaction, thermal diffusion and molecular mixing remain comparable when the flame is away from the wall for both wall boundary conditions. However, the wall boundary condition affects the entropy generation during flame-wall interaction. In the case of isothermal wall, the entropy generation due to chemical reaction vanishes because of flame quenching and the entropy generation due to thermal diffusion becomes the leading entropy generator at the wall. By contrast, the entropy generation due to thermal diffusion and molecular mixing decrease at the adiabatic wall because of the vanishing wall-normal components of the gradients of temperature and species mass/mole fractions. These differences have significant effects on the overall entropy generation rate during flame-wall interaction, which suggest that combustor wall cooling needs to be optimized from the point of view of structural integrity and thermodynamic irreversibility.  相似文献   

18.
Only the study of absorption and angular dependent scattering of GHz and THz sound can give us detailed information about interaction processes of acoustical phonons. Therefore, the necessary techniques of sound generation, detection and undisturbed transmission to the target must be improved or to a large extent must still be developed. Corresponding attempts at 35 GHz are described. Sound-beam topography allowed to study crystal defects and also showed us where transmission without scattering occurred. For the piezoelectric generation a reflex klystron was used feeding a planar Hertzian resonator. The needle-like sound beams appeared as a double beam, each showing a minimum diameter of 35 μm for longitudinal polarized sound at an acoustic wavelength of 165 nm in X-cut quartz and 320 nm in a-cut sapphire. To obtain the smallest possible beam diameter for high resolution work, model calculations are presented for an excited fundamental Gaussian sound beam in an isotropic medium.  相似文献   

19.
This paper examines the sound insulation of a single-leaf wall driven by a spherical wave. The transmitted sound field of an infinite elastic plate under a spherical wave incidence is theoretically analyzed and insulation mechanisms are considered. The displacement of the plate is formulated using the Hankel transform in wavenumber space and the transmitted sound pressure in the far-field is obtained by Rayleigh’s formula in an explicit closed form. Moreover, a reduction index is also derived in a closed form by introducing an approximation into the vibration characteristics of the plate. Deterioration of the insulation performance under the spherical wave incidence is caused by an apparent decrease of wall impedance that depends on the directivity of the transmitted sound wave. The mass law for a spherical wave incidence is different from that for a normal plane wave incidence: doubling the weight of the wall or the frequency gives an increase of 3 dB (c.f. 6 dB for a normal plane wave incidence), which is also smaller than the field incidence mass law.  相似文献   

20.
A crucial step in the understanding of vocal behavior of birds is to be able to classify calls in the repertoire into meaningful types. Methods developed to this aim are limited either because of human subjectivity or because of methodological issues. The present study investigated whether a feature generation system could categorize vocalizations of a bird species automatically and effectively. This procedure was applied to vocalizations of African gray parrots, known for their capacity to reproduce almost any sound of their environment. Outcomes of the feature generation approach agreed well with a much more labor-intensive process of a human expert classifying based on spectrographic representation, while clearly out-performing other automated methods. The method brings significant improvements in precision over commonly used bioacoustical analyses. As such, the method enlarges the scope of automated, acoustics-based sound classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号