首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the effect of constraint induced by the crack depth on creep crack-tip stress field in compact tension (CT) specimens is examined by finite element analysis, and the effect of creep deformation and damage on the Hutchinson–Rice–Rosengren (HRR) singularity stress field are discussed. The results show the constraint induced by crack depth causes the difference in crack-tip opening stress distributions between the specimens with different crack depth at the same C*. The maximum opening stress appears at a distance from crack tips, and the stress singularity near the crack tips does not exist due to the crack-tip blunting caused by the large creep deformation in the vicinity of the crack tips. The actual stress calculated by the finite element method (FEM) in front of crack tip is significantly lower than that predicted by the HRR field. Based on the reference stress field in the deep crack CT specimen with high constraint, a new constraint parameter R is defined and the constraint effect in the shallow crack specimen is examined at different distances ahead of the crack tip from transient to steady-state creep conditions. During the early stages of creep constraint increases with time, and then approaches a steady state value as time increases. With increasing the distance from crack tips and applied load, the negative R increases and the constraint decreases.  相似文献   

2.
A finite element analysis was performed to simulate crack tip blunting and the development of the intense strain region in a small compact tension specimen (0.4 T CT) of SA533B-1 under plane strain large-scale yielding, with the condition of large-geometry change around the crack tip taken into consideration. The region where the equivalent plastic strain \?g3p is greater than 0.15 was defined as the intense strain region, which corresponded to the recrystallized-etched zone delineated experimentally around the blunting crack tip. The development of the intense strain region was discussed as a function of the J-integral and the crack opening displacement. A linear relationship was obtained between the plastic work Wp dissipated within the intense strain region and (Jy)2 or b2, where b is the crack opening displacement, defined as the separation of the two points at which the boundary of the intense strain region surrounding the crack tip intersects with the free surfaces of the crack.  相似文献   

3.
A solution for Model-I plane strain crack tip fields in a bi-linear elastic–plastic material is presented. The elastic–plastic Poisson's ratio is introduced to characterize the influence of elastic deformation on the near tip constraint. Attention is focused on the distribution of elastic/plastic strain energy in the sensitive region of the forward sector ahead of a crack tip. The present study shows that the elastic strain energy can be higher than the plastic strain energy in this sensitive sector while large amount of the plastic strain energy develops outside this sector around the crack tip. The effect of elastic deformation in this sensitive region on the structure of crack-tip fields is considerable and the assumption in some important solutions for crack-tip fields reported in literature that the elastic deformation is small and can be ignored is therefore not physically reasonable. Besides, finite element analysis is carried out to validate the analytical solution and good agreement between them is found. It is seen that the present solution with T-stress can properly describe the crack-tip fields under various constraints for different specimens and an analytical relation is established between the critical value of J-integral, Jc, and T-stress for elastic–plastic fracture.  相似文献   

4.
A special crack tip displacement discontinuity element   总被引:3,自引:0,他引:3  
Based on the analytical solution to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid and the note of the crack tip element by Crouch, in the present paper, the special crack tip displacement discontinuity element is developed. Further the analytical formulas for the stress intensity factors of crack problems in general plane elasticity are given. In the boundary element implementation the special crack tip displacement discontinuity element is placed locally at each crack tip on top of the non-singular constant displacement discontinuity elements that cover the entire crack surface. Numerical results show that the displacement discontinuity modeling technique of a crack presented in this paper is very effective.  相似文献   

5.
Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant ΔK-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks.A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.  相似文献   

6.
An exact asymptotic analysis is presented of the stress and deformation fields near the tip of a quasistatically advancing plane strain tensile crack in an elastic-ideally plastic solid. In contrast to previous approximate analyses, no assumptions which reduce the yield condition, a priori, to the form of constant in-plane principal shear stress near the crack tip are made, and the analysis is valid for general Poisson ratio ν. Specific results are given for ν = 0.3 and 0.5, the latter duplicating solutions in previous work by L.I. Slepyan, Y.-C. Gao and the present authors. The crack tip field is shown to divide into five angular sectors of four different types ; in the order in which these sweep across a point in the vicinity of the advancing crack, they are : two plastic sectors which can be described asymptotically (i.e., as r → 0, where r is distance from the crack tip) in slip-line terminology as ‘constant stress’ and ‘centered fan’ sectors, respectively ; a plastic sector of non-constant stress which cannot be described asymptotically in terms of slip lines; an elastic unloading sector; and a trailing plastic sector of the same type as that directly preceding the elastic sector. Further, these four different sector types constitute the full set of asymptotically possible solutions at the crack tip. As is known from prior work, the plastic strain accumulated by a material point passing through such a moving ‘centered fan’ sector is O(ln r) as r → 0 ; it is proved in the present work that the plastic strain accumulated by a material point passing through the ‘constant stress’ sector ahead of a growing crack must be less singular than In r as r → 0. As suggested also in earlier studies, the rate of increase of opening gap δ at a point currently at a distance r behind, but very near, the crack tip is given for crack advance under contained yielding by
δ? = αJ?σ0+β(σ0E)a? ln(Rr)
where a is crack length, σ0 is tensile yield strength, E is Young's modulus, J is the value of the J-integral taken in surrounding elastic material, and the parameters α and R are undetermined by the asymptotic analysis. The exact solution for ν = 0.3 gives β = 5.462, which agrees very closely with estimates obtained from finite element solutions. An approximate analysis based on use of slip line representations in all plastic sectors is outlined in the Appendix.  相似文献   

7.
The near-tip field of a mode I crack growing steadily under plane strain conditions is studied. A key issue is whether strong discontinuities can propagate under dynamic conditions. Theories which impose rather restrictive assumptions on the structure of an admissible deformation path through a dynamically propagating discontinuity have been proposed recently. Asymptotic solutions for dynamic crack growth, based on such theories, do not contain any discontinuities. In the present work a broader family of deformation paths is considered and we show that a discontinuity can propagate dynamically without violating any of the mechanical constitutive relations of the material. The proposed theory for the propagation of strong discontinuities is corroborated by very detailed finite element calculations. The latter shows a plane of strong discontinuity emanating from the crack tip (with its normal pointing in the direction of crack advance) and moving with the tip. Elastic unloading ahead of and/or behind the plane of discontinuity and behind the crack tip have also been observed.The numerical investigation is performed within the framework of a boundary layer formulation whereby the remote loading is fully specified by the first two terms in the asymptotic solution of the elasto-dynamic crack tip field, characterized by K1, and T. It is shown that the family of near-tip fields, associated with a given crack speed, can be arranged into a one-parameter field based on a characteristic length, Lg, which scales with the smallest dimension of the plastic zone. This extends a previous result for quasi-static crack growth.  相似文献   

8.
在航空航天、船舶、石油管道和核电等领域,服役结构或部件在长期极端条件下运行,不可避免地会产生裂纹,因此,为研究含裂纹结构的准静态断裂行为,必须了解裂纹尖端附近区域的应力应变场特点.对于幂律材料裂纹构元,研究平面应变和平面应力条件下Ⅰ型裂纹尖端应力场的解析分布.基于能量密度等效和量纲分析,推导了能量密度中值点代表性体积单元(representative volume element, RVE)的等效应力解析方程,并定义其为应力因子,进而针对有限平面应变和平面应力紧凑拉伸(compact tension, CT)试样和单边裂纹弯曲(single edge bend, SEB)试样,以应力因子作为应力特征量,并构造用于表征裂尖等效应力等值线的蝶翅轮廓式和扇贝轮廓式三角特殊函数,提出描述幂律塑性条件下平面I型裂纹尖端应力场的半解析模型.该半解析模型形式简单,对CT和SEB试样的裂尖应力场的预测结果与有限元分析的结果比较表明,两者之间均密切吻合,模型公式可直接用于预测Ⅰ型裂纹尖端应力分布,方便于断裂安全评价和理论发展.  相似文献   

9.
The speed of Rayleigh surface waves, denoted CR, is the accepted upper limit for Mode I crack velocity in monolithic solids. In the current contribution, we discuss several critical issues associated with the velocity of Rayleigh surface waves and crack velocity in single crystal (SC) brittle solids, and the global and local influence of CR on crack path selection in particular.Recent cleavage experiments in SC silicon showed that crack velocity at certain cleavage planes and crystallographic orientations cannot exceed a small fraction of CR, and thereafter the crack deflects to other cleavage planes. Indeed, CR defined by the continuum mechanics ignores atomistic phenomena occurring during rapid crack propagation, and therefore is limited in predicting the crack velocity. Examination of these anomalies shows that this limitation lies in microstructural lattice arrangement and in anisotropic phonon radiation during rapid crack propagation. Globally, CR has no influence on the crack deflection phenomenon. However, the misfit in CR between the original plane of propagation and the deflected plane generates local instabilities along the deflection zone.  相似文献   

10.
The asymptotic stress and strain distribution near a crack tip in rubber-like materials is determined by finite element for in-plane mixed mode loading. For large strain, the crack tip field is always in a state of uniaxial tension. The shear load affects only the orientation of the deformed near tip field in the space. A good agreement is obtained between the theoretical and numerical results.  相似文献   

11.
Plasticity induced crack closure (PICC) has been widely studied using numerical models. Different numerical parameters can be considered to quantify the opening level, namely one based on the analysis of contact stresses at minimum load. A modified version of this parameter is proposed here, based on nodal contact forces instead of contact stresses. The predictions were found to be similar to those obtained from the contact status of 2nd node behind crack tip. The PICCcontact parameter was also found to be very consistent and adequate for parametric studies of the influence of different physical parameters. The contributions to the opening stress intensity factor of different points along crack flank were found to strongly decrease with distance to crack tip. The cumulative Kopen between the crack tip and a distance of 0.1 mm was found to vary from 30% to 100%, increasing with stress ratio, R. Finally, a K solution was developed for punctual forces applied on crack flank and compared with a literature solution for infinite plates. A good agreement was found for plane strain state but significant differences of about 10% were found for plane stress state.  相似文献   

12.
Steady state crack propagation problems of elastic-plastic materials in Mode I, plane strain under small scale yielding conditions were investigated with the aid of the finite element method. The elastic-perfectly plastic solution shows that elastic unloading wedges subtended by the crack tip in the plastic wake region do exist and that the stress state around the crack tip is similar to the modified Prandtl fan solution. To demonstrate the effects of a vertex on the yield surface, the small strain version of a phenomenological J2, corner theory of plasticity (Christoffersen, J. and Hutchinson, J. W. J. Mech. Phys. Solids,27, 465 C 1979) with a power law stress strain relation was used to govern the strain hardening of the material. The results are compared with the conventional J2 incremental plasticity solution. To take account of Bauschinger like effects caused by the stress history near the crack tip, a simple kinematic hardening rule with a bilinear stress strain relation was also studied. The results are again compared with the smooth yield surface isotropic hardening solution for the same stress strain curve. There appears to be more potential for steady state crack growth in the conventional J2 incremental plasticity material than in the other two plasticity laws considered here if a crack opening displacement fracture criterion is used. However, a fracture criterion dependent on both stress and strain could lead to a contrary prediction.  相似文献   

13.
提出了基于改进位移模式的一维C1有限元超收敛算法。利用单元内部需满足平衡方程的条件,推导了超收敛计算解析公式的显式,即将高阶有限元解的位移模式用常规有限元解的位移模式表示。用常规有限元解的位移模式与高阶有限元解的位移模式之和构造新的位移模式。采用积分形式推导了单元刚度矩阵。该算法在前处理阶段使用了超收敛计算公式,在常规试函数的基础上,增加了高阶试函数,使得单元内平衡方程的残差减少,从而达到提高精度的目标。对于Hermite单元,本文的结点和单元的位移、导数都达到了h4阶的超收敛精度。  相似文献   

14.
This paper studies the effects of the initial relative void spacing, void pattern, void shape and void volume fraction on ductile fracture toughness using three-dimensional, small scale yielding models, where voids are assumed to pre-exist in the material and are explicitly modeled using refined finite elements. Results of this study can be used to explain the observed fracture toughness anisotropy in industrial alloys. Our analyses suggest that simplified models containing a single row of voids ahead of the crack tip is sufficient when the initial void volume fraction remains small. When the initial void volume fraction becomes large, these simplified models can predict the fracture initiation toughness (JIc) with adequate accuracy but cannot predict the correct JR curve because they over-predict the interaction among growing voids on the plane of crack propagation. Consequently, finite element models containing multiple rows of voids should be used when the material has large initial void volume fraction.  相似文献   

15.
In ductile fracture, voids near a crack tip play an important role. From this point of view, a large deformation finite element analysis has been made to study the deformation, stress and strain, and void ratio near the crack tip under mixed mode plane strain loading conditions, employing Gurson's constitutive equation which has taken into account the effects of void nucleation and growth. The results show that: (i) one corner of the crack tip sharpens while the other corner blunts, (ii) the stress and strain distributions except for the near crack tip region, can be superimposed by normalizing distance from the crack tip by a crack tip deformation length, i.e., a steady-state solution under a mixed mode condition has been obtained, (iii) the field near a crack tip can be divided into four characteristic fields (K field, HRR field, blunted crack tip field, and damaged region), and (iv) the strain and void volume fraction become concentrated in the sharpened part of a crack tip with increasing Mode II component.  相似文献   

16.
从虚功方程出发,结合扩展有限元离散技术与接触条件的非线性互补表述,建立了摩擦接触裂纹问题的扩展有限元非线性互补模型,将不等式接触条件转化为非线性互补类的非光滑方程组,并采用基于广义导数的非光滑阻尼牛顿法求解方程组,无需引入任何额外人工变量以及迭代求解。以含中心倾斜裂纹平板和边裂纹平板为例,运用相互作用积分法计算摩擦接触裂纹的应力强度因子,将其结果与理论解进行对比分析,该方法都能给出精确的计算结果;基于扩展有限元方法对单轴压缩作用下倾斜裂纹扩展过程进行了数值模拟,计算结果表明,受压裂纹数值结果与实验结果比较吻合,从而验证了本文方法的有效性与正确性。  相似文献   

17.
The crack closure concept is often used to consider the R-ratio and overload effects on fatigue crack growth. The presumption is that when the crack is closed, the external load produces negligible fatigue damage in the cracked component. The current investigation provides a reassessment of the frequently used concept with an emphasis on the plasticity-induced crack closure. A center cracked specimen made of 1070 steel was investigated. The specimen was subjected to plane-stress mode I loading. An elastic–plastic stress analysis was conducted for the cracked specimens using the finite element method. By applying the commonly used one-node-per-cycle debonding scheme for the crack closure simulations, it was shown that the predicted crack opening load did not stabilize when the extended crack was less than four times of the plastic zone size. The predicted opening load was strongly influenced by the plasticity model used. When the elastic–perfectly plastic (EPP) stress–strain relationship was used together with the kinematic hardening plasticity theory, the predicted crack opening load was found to be critically dependent on the element size of the finite element mesh model. For R = 0, the predicted crack opening load was greatly reduced when the finite element size became very fine. The kinematic hardening rule with the bilinear (BL) stress–strain relationship predicted crack closure with less dependence on the element size. When a recently developed cyclic plasticity model was used, the element size effect on the predicted crack opening level was insignificant. While crack closure may occur, it was demonstrated that cyclic plasticity persisted in the material near the crack tip. The cyclic plasticity was reduced but not negligible when the crack was closed. The traditional approaches may have overestimated the effect of crack closure in fatigue crack growth predictions.  相似文献   

18.
Using Jaumann and Dienes rates of Euler stress in elastic-plastic constitutive equations of finite deformation, plane strain finite element analysis for a compact tension specimen with a blunted crack front is made. The Euler stress, Kirchhoff stress and volume strain energy density near a blunted crack tip are computed. Constitutive relations with different deformation rates affect the the near crack tip solution in a region within an order of magnitude of the crack opening displacement. The results differed from the corresponding solution of deformation plasticity (or nonlinear elasticity) with increasing deformation. They are smaller in a local region of about 2 to 10 times of the crack opening distance.The volume energy density near the crack tip is computed, the stationary values of which determine the locations of extensive yielding and possible sites of crack initiation. It remained nearly constant with increasing deformation. Such a character tends to support the volume energy density criterion as a means for quantifying the ductile fracture behavior of metals.  相似文献   

19.
Creep behavior of crack in dissimilar materials is studied using steady-state C* path independent integral and ABAQUS finite element code. The specific geometry involves an edge crack parallel to the interface of a bi-material tensile specimen at high temperature. Under extensive creep, the C* value for the bi-material specimen can be significantly higher than that for the homogeneous specimen. For small-scale creep material mismatch has little influence on the transient integral designated by Ct. The integral parameters C* or Ct are shown to depend on the inhomogeneity of the system and cannot characterize the creep behavior of cracks.The approach is extended to creep crack growth in a welded compact tension specimen. Modification factors are introduced for different crack and weld interface geometries.  相似文献   

20.
A full field solution, based on small deformation, three-dimensional elastic–plastic finite element analysis of the centrally cracked thin disk under mode I loading has been performed. The solution for the stresses under small-scale yielding and lo!cally fully plastic state has been compared with the HRR plane stress solution. At the outside of the 3D zone, within a distance of rσo/J=18, HRR dominance is maintained in the presence of a significant amount of compressive stress along the crack flanks. Ahead of this region, the HRR field overestimate the stresses. These results demonstrate a completely reversed state of stress in the near crack front compared to that in the plane strain case. The combined effect of geometry and finite thickness of the specimen on elastic–plastic crack tip stress field has been explored. To the best of our knowledge, such an attempt in the published literature has not been made yet. For the qualitative assessment of the results some of the field parameters have been compared to the available experimental results of K, gives a fair estimate of the crack opening stress near the crack front at a distance of order 10−2 in. On the basis of this analysis, the Linear Elastic Fracture Mechanics approach has been adopted in analyzing the fatigue crack extension experiments performed in the disk (Part II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号