首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper iterative schemes for approximating a solution to a rectangular but consistent linear system Ax = b are studied. Let A?Cm × nr. The splitting A = M ? N is called subproper if R(A) ? R(M) and R(A1) ?R(M1). Consider the iteration xi = M2Nxi?1 + M2b. We characterize the convergence of this scheme to a solution of the linear system. When A?Rm×nr, monotonicity and the concept of subproper regular splitting are used to determine a necessary and a sufficient condition for the scheme to converge to a solution.  相似文献   

2.
For a given pair (A,b)∈Rn×n×Rn×1 such that A is cyclic and b is a cyclic generator (with respect to A) of Rn×1, it is shown that for every nonnegative integer m we can find a nonnegative integer t and a sequence {fj}tj=0,fjR1×n,so that a the zeros of the rational function det P(z), where P(z) = zI ? A ? ∑tj=0z-(m+j)b?f, lie in the open unit disc in the complex plane. The result is directly applicable to a stabilizability problem for linear systems with a time delay in control action.  相似文献   

3.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

4.
Let Cn×n and Hn denote respectively the space of n×n complex matrices and the real space of n×n hermitian matrices. Let p,q,n be positive integers such that p?q?n. For A?Cn×n, the (p,q)-numerical range of A is the set
Wp,q(A)={trCp(JqUAU1):U unitary}
, where Cp(X) is the pth compound matrix of X, and Jq is the matrix Iq?On-q. Let L denote Hn or Cn×n. The problem of determining all linear operators T: LL such that
Wp,q(T(A))=Wp,q(A) for all A?L
is treated in this paper.  相似文献   

5.
Let A be the Clifford algebra constructed over a quadratic n-dimensional real vector space with orthogonal basis {e1,…, en}, and e0 be the identity of A. Furthermore, let Mk(Ω;A) be the set of A-valued functions defined in an open subset Ω of Rm+1 (1 ? m ? n) which satisfy Dkf = 0 in Ω, where D is the generalized Cauchy-Riemann operator D = ∑i = 0m ei(??xi) and k? N. The aim of this paper is to characterize the dual and bidual of Mk(Ω;A). It is proved that, if Mk(Ω;A) is provided with the topology of uniform compact convergence, then its strong dual is topologically isomorphic to an inductive limit space of Fréchet modules, which in its turn admits Mk(Ω;A) as its dual. In this way, classical results about the spaces of holomorphic functions and analytic functionals are generalized.  相似文献   

6.
Let Fm×n (m?n) denote the linear space of all m × n complex or real matrices according as F=C or R. Let c=(c1,…,cm)≠0 be such that c1???cm?0. The c-spectral norm of a matrix A?Fm×n is the quantity
6A6ci=Imciσi(A)
. where σ1(A)???σm(A) are the singular values of A. Let d=(d1,…,dm)≠0, where d1???dm?0. We consider the linear isometries between the normed spaces (Fn,∥·∥c) and (Fn,∥·∥d), and prove that they are dual transformations of the linear operators which map L(d) onto L(c), where
L(c)= {X?Fm×n:X has singular values c1,…,cm}
.  相似文献   

7.
If θ is a norm on Cn, then the mapping A→limh↓06I+hA6θ?1/h from Mn(C) (=Cn × n) into R is called the logarithmic derivative induced by the vector norm θ. In this paper we generalize this concept to a mapping γ from Mn(C) into Mk(R), where k ? n. Denoting by α(B) the spectral abscissa of a square matrix B (the largest of the real parts of the eigenvalues), we show, in particular, that α(A) ?α(γ(A)). As a byproduct we obtain simple sufficient conditions for the stability of a matrix.  相似文献   

8.
Let Lk(S) be the product of the ?(k) Dirichlet L-functions formed with characters modulo k. We prove the existence of explicit numerical zero-free regions for Lk(S). The first result is that Lk(S) has at most a single zero in the region {s: σ > 1 ? 1(R log M)}, where R = 9.645908801 and M = max {k, k |t|, 10}. The only possible zero in this region is a simple real zero arising from an L-function formed with a real non-principal character. The second result is that if χ1 and χ2 are distinct real primitive characters modulo k1 and k2, respectively, and if β1 is a zero of L(s, χi), i = 1, 2, then min 1, β2} < 1 ? 1(R1log M1), where R1 = (5 ? √5)(15 ? 10√2), and M1 = max{k1k217, 13}.  相似文献   

9.
Let U1, U2,… be a sequence of independent, uniform (0, 1) r.v.'s and let R1, R2,… be the lengths of increasing runs of {Ui}, i.e., X1=R1=inf{i:Ui+1<Ui},…, Xn=R1+R2+?+Rn=inf{i:i>Xn?1,Ui+1<Ui}. The first theorem states that the sequence (32n)12(Xn?2n) can be approximated by a Wiener process in strong sense.Let τ(n) be the largest integer for which R1+R2+?+Rτ(n)?n, R1n=n?(R1+R2+?+Rτ(n)) and Mn=max{R1,R2,…,Rτ(n),R1n}. Here Mn is the length of the longest increasing block. A strong theorem is given to characterize the limit behaviour of Mn.The limit distribution of the lengths of increasing runs is our third problem.  相似文献   

10.
Let E be a finite set of points in Rd. Then {A, E ? A} is a non-Radon partition of E iff there is a hyperplane H separating A strictly from E?A. Or equivalently iff AO is an acyclic reorientation of (MAff(E), O), the oriented matroid canonically determined by E. If (M(E), O) is an oriented matroid without loops then the set NR(E, O) = {(A, E ? A): AO is acyclic} determines (M(E), O). In particular the matroidal properties of a finite set of points in Rd are precisely the properties which can be formulated in non-Radon partitions terms. The Möbius function of the poset A = {A: A ? E, AO is acyclic} and in a special case its homotopy type are computed. This paper generalizes recent results of P. Edelman (A partial order on the regions of Rn dissected by hyperplanes  相似文献   

11.
Let A be an arbitrary n×n matrix, partitioned so that if A=[Aij], then all submatrices Aii are square. If x is a positive vector, it is well-known that G(x) =∪Ni=1Gi(x), where
Gi(x) = z6(zI ? Aii)?16?1 ? 1xij = 1j ≠ iN`6Aij6xj
, contains all the eigenvalues of A. The purpose of this paper is to give a new definition of the concept of an isolated subregion of G(x). An algorithm is given for obtaining the best such isolated subregion in a certain sense, and examples are given to show that tighter bounds for some eigenvalues of A may be obtained than with previous algorithms. For ease of computation, each subregion Gi(x) is replaced by the union of circular disks centered at the eigenvalues of Aii.  相似文献   

12.
13.
Let A be an n×n integral matrix with determinant D>0, and let P(A) be the n-parallelepiped determined by the columns {Ai}ni=1 of A,
P(A)=i=1nxiAi0<xi<1
Let L be the set of integral vectors in P(A), and let G(A) be the subset of L consisting of vectors whose coefficients xi satisfy 0?xi<1. We show that G(A), equipped with addition modulo 1 on the coefficients xi, is an Abelian group of order D, whose invariant factors are the invariant factors of the integral matrix A. We give a formula for |L|, and show that |L| is not a similarity invariant.  相似文献   

14.
The following results are proved: Let A = (aij) be an n × n complex matrix, n ? 2, and let k be a fixed integer, 1 ? k ? n ? 1.(1) If there exists a monotonic G-function f = (f1,…,fn) such that for every subset of S of {1,…,n} consisting of k + 1 elements we have
Πi∈Sfi(A)<Πi∈S|aii|,
then the rank of A is ? n ? k + 1. (2) If A is irreducible and if there exists a G-function f = (f1,…,fn) such that for every subset of S of {1,…,n} consisting of k + 1 elements we have
Πi∈Sfi(A)<Πi∈S|aii|,
then the rank of A is ? n ? k + 1 if k ? 2, n ? 3; it is ? n ? 1 if k = 1.  相似文献   

15.
Let A be an n×n complex matrix. For a suitable subspace M of Cn the Schur compression A M and the (generalized) Schur complement A/M are defined. If A is written in the form
A= BCST
according to the decomposition Cn=MM and if B is invertible, then
AM=BCSSB?1C
and
A/M=000T?SB?1C·
The commutativity rule for Schur complements is proved:
(A/M)/N=(A)/N)/M·
This unifies Crabtree and Haynsworth's quotient formula for (classical) Schur complements and Anderson's commutativity rule for shorted operators. Further, the absorption rule for Schur compressions is proved:
(A/M)N=(AN)M=AM whenever M?N
.  相似文献   

16.
If Ω denotes an open subset of Rn (n = 1, 2,…), we define an algebra g (Ω) which contains the space D′(Ω) of all distributions on Ω and such that C(Ω) is a subalgebra of G (Ω). The elements of G (Ω) may be considered as “generalized functions” on Ω and they admit partial derivatives at any order that generalize exactly the derivation of distributions. The multiplication in G(Ω) gives therefore a natural meaning to any product of distributions, and we explain how these results agree with remarks of Schwartz on difficulties concerning a multiplication of distributions. More generally if q = 1, 2,…, and ?∈OM(R2q)—a classical Schwartz notation—for any G1,…,GqG(σ), we define naturally an element ?G1,…,Gq∈G(σ). These results are applied to some differential equations and extended to the vector valued case, which allows the multiplication of vector valued distributions of physics.  相似文献   

17.
For fixed p (0 ≤ p ≤ 1), let {L0, R0} = {0, 1} and X1 be a uniform random variable over {L0, R0}. With probability p let {L1, R1} = {L0, X1} or = {X1, R0} according as X112(L0 + R0) or < 12(L0 + R0); with probability 1 ? p let {L1, R1} = {X1, R0} or = {L0, X1} according as X112(L0 + R0) or < 12(L0 + R0), and let X2 be a uniform random variable over {L1, R1}. For n ≥ 2, with probability p let {Ln, Rn} = {Ln ? 1, Xn} or = {Xn, Rn ? 1} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), with probability 1 ? p let {Ln, Rn} = {Xn, Rn ? 1} or = {Ln ? 1, Xn} according as Xn12(Ln ? 1 + Rn ? 1) or < 12(Ln ? 1 + Rn ? 1), and let Xn + 1 be a uniform random variable over {Ln, Rn}. By this iterated procedure, a random sequence {Xn}n ≥ 1 is constructed, and it is easy to see that Xn converges to a random variable Yp (say) almost surely as n → ∞. Then what is the distribution of Yp? It is shown that the Beta, (2, 2) distribution is the distribution of Y1; that is, the probability density function of Y1 is g(y) = 6y(1 ? y) I0,1(y). It is also shown that the distribution of Y0 is not a known distribution but has some interesting properties (convexity and differentiability).  相似文献   

18.
Let B(H) be the bounded operators on a Hilbert space H. A linear subspace R ? B(H) is said to be an operator system if 1 ?R and R is self-adjoint. Consider the category b of operator systems and completely positive linear maps. R ∈ C is said to be injective if given A ? B, A, B ∈ C, each map AR extends to B. Then each injective operator system is isomorphic to a conditionally complete C1-algebra. Injective von Neumann algebras R are characterized by any one of the following: (1) a relative interpolation property, (2) a finite “projectivity” property, (3) letting Mm = B(Cm), each map RN ? Mm has approximate factorizations RMnN, (4) letting K be the orthogonal complement of an operator system N ? Mm, each map MmK → R has approximate factorizations MmK → Mn → R. Analogous characterizations are found for certain classes of C1-algebras.  相似文献   

19.
20.
Properties of the graph G(Ωn) of the polytope Ωn of all n × n nonnegative doubly stochastic matrices are studied. If F is a face of Ωn which is not a k-dimensional rectangular parallelotope for k ≥ 2, then G(F) is Hamilton connected. Prime factor decompositions of the graphs of faces of Ωn relative to Cartesian product are investigated. In particular, if F is a face of Ωn, then the number of prime graphs in any prime factor decomposition of G(F) equals the number of connected components of the neighborhood of any vertex of G(F). Distance properties of the graphs of faces of Ωn are obtained. Faces F of Ωn for which G(F) is a clique of G(Ωn) are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号