首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The steady state out-of-plane response of a Timoshenko curved beam with internal damping to a sinusoidally varying point force or moment is determined by use of the transfer matrix approach. For this purpose, the equations of out-of-plane vibration of a curved beam are written as a coupled set of the first order differential equations by using the transfer matrix of the beam. Once the matrix has been determined by numerical integration of the equations, the steady state response of the beam is obtained. The method is applied to free-clamped non-uniform beams with circular, elliptical, catenary and parabolical neutral axes driven at the free end; the driving point impedance and force or moment transmissibility are calculated numerically and the effects of the slenderness ratio, varying cross-section and the function expressing the neutral axis on them are studied.  相似文献   

2.
Structures which have a constant cross-section normal to a longitudinal axis can be considered as waveguides in which vibration can propagate in the form of various waves in the longitudinal direction. The dynamic behaviour of such systems can be found by using a Fourier transform approach in terms of wavenumbers in the longitudinal direction. Analytical solutions are available for simple, infinitely long waveguides, whereas for more complex waveguides numerical approaches have been developed using finite element techniques to describe the cross-section. In the present paper an analytical Fourier transform approach is used to find the dynamic behaviour of a system consisting of two parallel beams coupled by a plate, when a point force is applied to one of the beams. Multiple waves occur in the longitudinal direction, the number of waves depending on the number of modes of the equivalent cross-section. However, the motion of the driven beam is shown to be dominated by the contribution from only one or two waves at each frequency, these having wavenumbers closest to that of the uncoupled beam. The motion of the plate is also shown to be dominated by these wavenumbers for excitation on the beam. Experimental results are obtained on beam–plate–beam systems with identical and non-identical beams, which show good agreement with the predictions. In particular, these confirm that the plate response is dominated by waves with wavenumbers in the beam direction that follow those of the excited beam.  相似文献   

3.
Stress distributions and flexural vibration of rotating annular discs with radially varying thickness are calculated by means of a spline interpolation technique. For this purpose, the disc is divided into many ring-shaped elements and the radial displacement is expressed as a cubic spline function, which satisfies the equation of equilibrium of force at all the knots and also satisfies boundary conditions at both edges. Centrifugal stress distributions are calculated from the radial displacement. The transverse deflection of the disc is expressed as a quintic spline function. The frequency equation is derived from the conditions that this function satisfies the differential equation governing the flexural vibration of the disc at the knots and also satisfies the edge conditions. The method is applied to free-clamped rotating discs with linearly, parabolically and exponentially varying thickness, the natural frequencies and the mode shapes are calculated numerically, and the effects of rotating velocity and variable thickness are discussed.  相似文献   

4.
The free vibration of ring-shaped polar-orthotropic sector plates is analyzed by the Ritz method using a spline function as an admissible function for the deflection of the plates. For this purpose, the transverse deflection of a sector plate is written in a series of the products of the deflection function of a sectorial beam and that of a circular beam satisfying the boundary conditions. The deflection function of the sectorial beam is approximately expressed by a quintic spline function, which satisfies the equation of flexural vibration of the beam at each point dividing the beam into small elements. The frequency equation of the plate is derived by the conditions for a stationary value of the Lagrangian. The present method is applied to ring-shaped polar-orthotropic sector plates with some combination of boundary conditions, and the natural frequencies and the mode shapes are calculated numerically up to higher modes. This method is very effective for the study of vibration problems of variously shaped anisotropic plates including these sector plates.  相似文献   

5.
An analysis is presented for the vibration and stability of a non-uniform Timoshenko beam subjected to a tangential follower force distributed over the center line by use of the transfer matrix approach. For this purpose, the governing equations of a beam are written in a coupled set of first-order differential equations by using the transfer matrix of the beam. Once the matrix has been determined by numerical integration of the equations, the eigenvalues of vibration and the critical flutter loads are obtained. The method is applied to beams with linearly, parabolically and exponentially varying depths, subjected to a concentrated, uniformly distributed or linearly distributed follower force, and the natural frequencies and flutter loads are calculated numerically, from which the effects of the varying cross-section, slenderness ration, follower force and the stiffness of the supports on them are studied.  相似文献   

6.
This paper studies free vibration of axially functionally graded beams with non-uniform cross-section. A novel and simple approach is presented to solve natural frequencies of free vibration of beams with variable flexural rigidity and mass density. For various end supports including simply supported, clamped, and free ends, we transform the governing equation with varying coefficients to Fredholm integral equations. Natural frequencies can be determined by requiring that the resulting Fredholm integral equation has a non-trivial solution. Our method has fast convergence and obtained numerical results have high accuracy. The effectiveness of the method is confirmed by comparing numerical results with those available for tapered beams of linearly variable width or depth and graded beams of special polynomial non-homogeneity. Moreover, fundamental frequencies of a graded beam combined of aluminum and zirconia as two constituent phases under typical end supports are evaluated for axially varying material properties. The effects of the geometrical and gradient parameters are elucidated. The present results are of benefit to optimum design of non-homogeneous tapered beam structures.  相似文献   

7.
The optimal design of beams in torsion under harmonically varying torques is discussed. The analysis covers the cases when the excitation frequency is either less than or greater than the fundamental frequency of the beam. The beams analyzed are in the main assumed to have rectangular cross-section but the theory is easily extended to other section shapes. In each case the problem is stated in variational form with the introduction of constraints through Lagrange multipliers. The mathematical analysis of the various problems presented results in a system of non-linear differential equations with associated boundary conditions. The solutions given for some of the cases provide expressions for the design variable and the response, along the length of the beam, in terms of the forcing frequency and some constants which can be determined for the particular problem. The computed results and data are given in tabular form and some optimum profiles are shown graphically.  相似文献   

8.
The driving point impedance method, as described theoretically by Snowdon [1], for measuring the complex modulus of elasticity of a beam has been implemented experimentally, with use of a vibrational impedance head. The influence of the transmission function of the impedance head as well as of the mass impedance of the element connecting the beam and the head on the measured results for the complex moduli of elasticity of viscoelastic beams has been examined theoretically and experimentally. Values of the loss factor and Young's modulus have been determined at resonance and antiresonance modes of a Plexiglass beam over the frequency range 40–7000 Hz.  相似文献   

9.
The steady state out-of-plane response of an internally damped ring supported by springs in some bays to a sinusoidally varying point force or moment is determined by use of the transfer matrix technique. For this purpose, the equations of out-of-plane vibration of a uniform circular ring based upon the Timoshenko beam theory are written as a coupled set of first order differential equations by using the transfer matrix of the ring. The matrix is obtained analytically and the steady state response of the ring is determined by the product of the matrices in free bays and those in supported bays. In this case, the elastic moduli of the ring and springs with internal damping are assumed to be complex quantities. The method is applied to rings supported against deflection and torsion in some bays of the same length located at equal angular intervals; the driving point impedance, transfer impedance and the distributions of the deflection, angular rotation, force and moment are calculated numerically, and the effects of the number, the stiffness and the length of supporting springs on them are studied.  相似文献   

10.
A simple characterization of the polarization state of partially polarized beams is proposed on the basis of the Stokes parameters expressed in terms of the radial and azimuthal components of the field at each point of the beam cross-section. The main properties of the proposed Stokes representation are also shown, and its physical meaning is discussed.  相似文献   

11.
张永康  鲍四元 《应用声学》2024,43(2):330-338
本文使用微分方程解析法求解变截面梁固有频率。首先,建立变截面梁模型,其中截面面积和惯性矩均按幂次函数变化。得到变截面梁自由振动时挠度的解析表达式,并获得不同边界条件下梁弯曲振动的固有频率方程。其中惯性矩所对应幂指数与截面面积的幂指数的差值为4时,可得自振频率方程的精确形式;而幂指数差值不等于4时,给出近似解法。其次,对4种具体的变截面梁求解不同边界下的自振频率,并与瑞利-里兹法所得的自振频率解比较。验证精确解法结果的正确性,并发现近似解法结果的相对偏差在5%以内。该解析方法较瑞利-里兹法具有能快速求解的特点,且易于分析截面参数对梁固有频率的影响。由算例可得,边界和其他参数不变时,梁的同阶次无量纲自振频率随着幂次指数的增加而增加。几何参数中仅截面形状参数改变时,随着形状参数的增加,梁的同阶次无量纲自振频率随之减小,但固定-自由梁的第一阶自振频率除外。  相似文献   

12.
In this paper, the 2-D electrostatic field software, POISSON, is used to calculate the characteristic impedance of a BPM (beam position monitor) for a high current proton linac. Furthermore, the time-domain 3-D module of MAFIA with a beam microbunch at a varying offset from the axis is used to compute the induced voltage on the electrodes as a function of time. Finally, the effect of low 13 beams on the induced voltage, the sensitivity and the signal dynamic range of the BPM are discussed.  相似文献   

13.
New frequency equations for transverse vibrations of Timoshenko beams carrying a concentrated mass at an arbitrary point along the beam are given. Normal mode equations for the hinged-hinged beam are given and the orthogonality condition is presented for beams with hinged, clamped or free ends. A numerical example is given and frequency charts show the effects of varying the size and location of the concentrated mass.  相似文献   

14.
The non-linear free vibrations of stepped thickness beams are analyzed by assuming sinusoidal responses and using the transfer matrix method. The numerical results for clamped and simply supported, one-stepped thickness beams with rectangular cross-section are presented and the effects of the beam geometry on the non-linear vibration characteristics are discussed. The results are also compared with those obtained by a Galerkin method in which the linear mode function of the beam is used. The use of a Galerkin method seems to considerably overestimate the non-linearity of the stepped thickness beam in certain cases.  相似文献   

15.
This paper presents a method for solving problems of transient response in flexure due to general unidirectional dynamic loads of beams of variable cross section with tip inertias. An elastodynamic theory which includes effects of continuous mass and rigidity of the beam has been applied. In the analysis the general dynamic load is expanded into a Fourier series and the beam is divided into many small uniform thickness segments. The equation of motion of each segment is mapped onto the complex domain by use of the Laplace transform method. The solutions of each set of adjoining segments are related to each other at the boundaries by the use of the transfer matrix method. The displacement, the bending slope, the bending moment and the shearing force at each boundary and at arbitrary time are obtained from the Laplace transform inversion integral by using the residue theorem. The theoretical results given in this paper are applicable to problems of dynamic response due to arbitrary loads varying with time of beams of arbitrary shape with concentrated tip inertias. As applications of the present theoretical results, numerical calculations have been carried out for two cases: a uniform beam with a tip inertia and a non-uniform beam (a truncated cone) with a tip inertia. Both are immersed in a fluid and subjected to large waves such as cnoidal waves.  相似文献   

16.
Analytical and semi-analytical solutions are presented for anisotropic functionally graded beams subject to an arbitrary load, which can be expanded in terms of sinusoidal series. For plane stress problems, the stress function is assumed to consist of two parts, one being a product of a trigonometric function of the longitudinal coordinate (x) and an undetermined function of the thickness coordinate (y), and the other a linear polynomial of x with unknown coefficients depending on y. The governing equations satisfied by these y-dependent functions are derived. The expressions for stresses, resultant forces and displacements are then deduced, with integral constants determinable from the boundary conditions. While the analytical solution is derived for the beam with material coefficients varying exponentially or in a power law along the thickness, the semi-analytical solution is sought by making use of the sub-layer approximation for the beam with an arbitrary variation of material parameters along the thickness. The present analysis is applicable to beams with various boundary conditions at the two ends. Three numerical examples are presented for validation of the theory and illustration of the effects of certain parameters. Supported by the National Natural Science Foundation of China (Grant Nos. 10472102, 10432030, and 10725210)  相似文献   

17.
Two-dimensional thermoelasticity analysis of functionally graded thick beams is presented using the state space method coupled with the technique of differential quadrature. Material properties vary continuously and smoothly through the beam thickness, leading to variable coefficients in the state equation derived from the elasticity equations. Approximate laminate model is employed to translate the state equation into the one with constant coefficients in each layer. To avoid numerical instability, joint coupling matrices are introduced according to the continuity conditions at interfaces in the approximate model. The differential quadrature procedure is applied to discretizing the beam in the axial direction to make easy the treatment of arbitrary end conditions. A simply-supported beam with exponentially varying material properties is considered to validate the present method. Numerical examples are performed to investigate the influences of relative parameters.  相似文献   

18.
By using a small number of Gaussian basis functions, one can synthesize the wave fields radiated from planar and focused piston transducers in the form of a superposition of Gaussian beams. Since Gaussian beams can be transmitted through complex geometries and media, such multi-Gaussian beam models have become powerful simulation tools. In previous studies the basis function expansion coefficients of multi-Gaussian beam models have been obtained by both spatial domain and k-space domain methods. Here, we will give an overview of these two methods and relate their expansion coefficients. We will demonstrate that the expansion coefficients that have been optimized for circular piston transducers can also be used to generate improved field simulations for rectangular probes. It will also be shown that because Gaussian beams are only approximate (paraxial) solutions to the wave equation, a multi-Gaussian beam model is ultimately limited in the accuracy it can obtain in the very near field.  相似文献   

19.
The amplitudes and the phases of the elements of electric cross-spectral density matrix are determined experimentally for a pair of points in the cross-section of an expanded laser beam. A modified version of the Young’s interferometer is used as an experimental tool, which separates the beams emerging from the double-slit widely and provides ease in insertion of polarizers and half wave rotators in individual beams. To determine these complex elements of the cross-spectral density matrix, the experimentally obtained values of the spectral densities at an off-axis point are put in the mathematical expressions derived by us using the spectral interference law. The four complex generalized Stokes parameters are also determined using the linear combinations of the matrix elements. This unique but simple experimental approach for determining both the two-point parameters might provide a means to investigate the polarization and the coherence properties of the random electromagnetic beams on propagation.  相似文献   

20.
This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of unconstrained pretwisted beams with general cross-section (including both straight and curved cross-sections). In general, the dynamic response of pretwisted beams presents three-dimensional (3D) motions, including coupled bending–bending–torsional–axial motions. As such, accurately solving pretwisted beam dynamics requires a 3D solution approach. In this work, the integral boundary value problem based on the 3D linear elasticity equations is solved numerically using the 3D-ST approach. To simplify evaluation of the volume integrals, the boundaries are simplified by applying two coordinate transformations to render the pretwisted beam with curved cross-section into an equivalent straight beam with rectangular cross-section. Three sample pretwisted beam problems with rectangular, curved, and airfoil cross-sections at different twist rates are solved using the presented approach. In each case, the convergence of the solution is analyzed, and non-dimensional natural frequencies and mode shapes are compared to those from a finite-element (FE) solution. Furthermore, cross-sectional stress and displacements are obtained from the 3D-ST solution. Lastly, the non-dimensional natural frequencies from the 3D-ST and a 1D/2D solutions are compared. It is concluded that the 3D-ST solution can capture the three-dimensional dynamic behavior of pretwisted beams as accurately as an FE solution, but for a fraction of the computational cost. Furthermore, it is shown that 1D/2D solution can lead to significant errors at high twist rates, and thus, the 3D-ST solution should be preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号