首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
LetK be a quadratic number field with discriminantD and denote byF(n) the number of integral ideals with norm equal ton. Forr≥1 the following formula is proved $$\sum\limits_{n \leqslant x} {F(n)F(n + r) = M_K (r)x + E_K (x,r).} $$ HereM k (r) is an explicitly determined function ofr which depends onK, and for every ε>0 the error term is bounded by \(|E_K (x,r)|<< |D|^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0em} 2} + \varepsilon } x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6} + \varepsilon } \) uniformly for \(r<< |D|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-0em} 6}} \) Moreover,E k (x,r) is small on average, i.e \(\int_X^{2X} {|E_K (x,r)|^2 dx}<< |D|^{4 + \varepsilon } X^{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-0em} 2} + \varepsilon } \) uniformly for \(r<< |D|X^{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-0em} 4}} \) .  相似文献   

4.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

5.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

6.
В работе рассматрива ется асимптотика в ме трике пространстваL p (T N ),T N ={xR N , 0<x i <2π} ядра Р исса-Бохнера $$\Theta ^s \left( {x, \lambda } \right) = \left( {2\pi } \right)^{ - N} \mathop \Sigma \limits_{\left| n \right|^2< \lambda } \left( {1 - \frac{{\left| n \right|^2 }}{\lambda }} \right)^s e^{inx} \left( {x \in T^N , s \geqq 0, \lambda \geqq 0} \right)$$ при λ→∞. Доказывается, что есл иN≧4,p≧2N/(N?1) иs>N((N?1)/2N?1/p), то для произвольной точкиxT N существует п остояннаяC=C p (x, s) такая, что выполняется неравен ство $$\parallel \Theta ^s \left( {x - y, \lambda } \right) - \left( {2\pi } \right)^{ - {N \mathord{\left/ {\vphantom {N 2}} \right. \kern-\nulldelimiterspace} 2}} 2^s \Gamma \left( {s + 1} \right)\lambda ^{{N \mathord{\left/ {\vphantom {N 2}} \right. \kern-\nulldelimiterspace} 2}} J_{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} {{\left( {\left| {x - y} \right|\sqrt \lambda } \right)} \mathord{\left/ {\vphantom {{\left( {\left| {x - y} \right|\sqrt \lambda } \right)} {\left( {\left| {x - y} \right|\sqrt \lambda } \right)^{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} \parallel _{L_p \left( {T^N } \right)} \leqq }}} \right. \kern-\nulldelimiterspace} {\left( {\left| {x - y} \right|\sqrt \lambda } \right)^{{N \mathord{\left/ {\vphantom {N {2 + s}}} \right. \kern-\nulldelimiterspace} {2 + s}}} \parallel _{L_p \left( {T^N } \right)} \leqq }}$$ где нормаL p (T N ) берется по пе ременнойy, а черезJ v обозначена функция Б есселя первого рода порядкаv. СлучаиN=2 иN=3 рассматриваются отдельно.  相似文献   

7.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

8.
In this paper, we give a Landesman-Lazer type theorem for periodic solutions of the asymmetric 1-dimensional p-Laplacian equation -(|x'|^p-2x')'=λ|x|^p-2x++μ|x|^p-2x-+f(t,x)with periodic boundary value.  相似文献   

9.
Let {ξi,-∞i∞} be a doubly infinite sequence of identically distributed-mixing random variables with zero means and finite variances,{ai,-∞i∞} be an absolutely summable sequence of real numbers and X k =∑i=-∞+∞ aiξi+k be a moving average process.Under some proper moment conditions,the precise asymptotics are established for  相似文献   

10.
Let Ω ? 0 be an open bounded domain in R N (N ≥ 3) and $2^* (s) = \tfrac{{2(N - s)}} {{N - 2}}$ , 0 < s < 2. We consider the following elliptic system of two equations in H 0 1 (Ω) × H 0 1 (Ω): $$- \Delta u - t\frac{u} {{\left| x \right|^2 }} = \frac{{2\alpha }} {{\alpha + \beta }}\frac{{\left| u \right|^{\alpha - 2} u\left| v \right|^\beta }} {{\left| x \right|^s }} + \lambda u, - \Delta v - t\frac{v} {{\left| x \right|^2 }} = \frac{{2\beta }} {{\alpha + \beta }}\frac{{\left| u \right|^\alpha \left| v \right|^{\beta - 2} v}} {{\left| x \right|^s }} + \mu v,$$ where λ, µ > 0 and α, β > 1 satisfy α + β = 2*(s). Using the Moser iteration, we prove the asymptotic behavior of solutions at the origin. In addition, by exploiting the Mountain-Pass theorem, we establish the existence of solutions.  相似文献   

11.
12.
Let S j : (Ω, P) → S 1 ? ? be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality $${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$ for 0 < p < 1, verifying a conjecture of U. Haagerup that $${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$ . Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ? n , ‖x2 = 1, that $${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$ , answering a question of A. Baernstein and R. Culverhouse.  相似文献   

13.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

14.
The instability property of the standing wave uω(t, x) = eiωtφ(x) for the Klein–Gordon– Hartree equation  相似文献   

15.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

16.
For a cubature formula of the form $$\int\limits_0^{2\pi } {\int\limits_0^{2\pi } {f(x,y)dxdy = \frac{{4\pi ^2 }} {{mn}}\sum\limits_{i = 0}^{n - 1} {\sum\limits_{j = 0}^{m - 1} {f\left( {\frac{{2\pi i}} {n},\frac{{2\pi j}} {m}} \right) + R_{n,m} (f)} } } }$$ on a Chebyshev grid, the remainder R n,m (f) is proved to satisfy the sharp estimate $$\mathop {\sup }\limits_{f \in H\left( {r_1 ,r_2 } \right)} \left| {R_{n,m} (f)} \right| = O\left( {n^{ - r_1 + 1} + m^{ - r_1 + 1} } \right)$$ in some class of functions H(r 1, r 2) defined by a generalized shift operator. Here, r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in the O-term depends only on ??.  相似文献   

17.
LetB denote the closure of a bounded open set of points inE n with Jordan content |B|>0 and letc>0 be constant. Typical of the expressions considered is $$M(N,c) = \max _{\left\{ {x_j } \right\}} \min _{x \in B} \sum\limits_{j = 1}^N {\left| {x - x_j } \right|^{ - c} } ,x_j \in E^n$$ Together with its analogs and extensions, the problem forc has a long history, associated with the names of Fekete, Leja, Pólya, Szegö, Frostman and Carleson, to mention just a few. It involves the notions of generalized capacity, transfinite diameter, and equilibrium potential. Here we consider the casec≧n and its extensions, for which the prior history seems less comprehensive. Illustrative of the results obtained are the three equations $$\mathop {\lim }\limits_{N \to \infty } \frac{{M(N,n)}}{{N\log N}} = \frac{{\omega (n)}}{{\left| B \right|}},\mathop {\lim }\limits_{N \to \infty } \frac{{M(N,c)}}{{N^{{c \mathord{\left/ {\vphantom {c n}} \right. \kern-\nulldelimiterspace} n}} }} = \frac{{L(n,c)}}{{\left| B \right|^{{c \mathord{\left/ {\vphantom {c n}} \right. \kern-\nulldelimiterspace} n}} }},\mathop {\lim }\limits_{c \to \infty } L(n,c)^{{1 \mathord{\left/ {\vphantom {1 c}} \right. \kern-\nulldelimiterspace} c}} = \mathop {\lim }\limits_{N \to \infty } \frac{{\left( {\left| B \right|/N} \right)^{{1 \mathord{\left/ {\vphantom {1 n}} \right. \kern-\nulldelimiterspace} n}} }}{{\varrho (N)}}$$ In the firstc=n and ω (n) is the volume of the unit ball. In the secondc>n and existence of the limit is asserted, 0<L(n,c)<∞. In the third, ? (N) is the smallest value such thatN spheres of radius ? (N) can coverB. The results would be unchanged if we requiredx j ∈B instead ofx j ∈E n in the definition ofM(N, c).  相似文献   

18.
Kayumov  I. R. 《Mathematical Notes》2004,76(3-4):472-477
In this paper, the following sharp estimate is proved: $$\int_{0}^{2{\pi }} {\left| {F\prime \left( {e^{i\theta } } \right)} \right|^p d\theta \leqslant \sqrt {\pi } 2^{1 + p} \frac{{\gamma \left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} {{\gamma \left( {1 + {p \mathord{\left/ {\vphantom {p 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} ,\quad p > - 1,$$ where F is the conformal mapping of the domain $D^ - = \left\{ {\zeta :\left| \zeta \right| > 1} \right\}$ onto the exterior of a convex curve, with $F\prime \left( \infty \right) = 1$ . For p=1, this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain F(D -).  相似文献   

19.
20.
The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.
  1. Let S, H denote the singular integral involution operator and the Hilbert transform on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$ $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$ Both inequalities are sharp.
  2. Let P + and P ? stand for the Riesz projection and the co-analytic projection on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$ $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$ Both inequalities are sharp.
  3. We establish the sharp versions of the estimates above in the nonperiodic case.
The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号