首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用共压-共烧结的方法制备以NiO-La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O2-δ复合阳极为支撑,以Ce0.8Gd0.2O2-δ(GDC)为电解质,以La0.8Sr0.2Co0.8Fe0.2O3-δ (LSCF)-Ce0.8Gd0.2O2-δ(GDC)为复合阴极的单电池,在 400~650 ℃范围内,以干甲烷为燃料气,氧气为氧化气,测试了单电池的性能.用SEM对单电池进行微观结构分析,并对电池在650 ℃进行了6 h的稳定性测试,结果表明,该电池在6 h的测试过程中功率有较大的衰减,单电池在650 ℃时得到电流密度和功率流密度分别为为258.26 mA/cm2,为51.31 mW/cm2.  相似文献   

2.
采用共压-共烧结的方法制备了以NiO-La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O2-δ复合阳极为支撑、以Ce0.8Gd0.2O2-δ(GDC)为电解质、以La0.8Sr0.2Co0.8Fe0.2O3-δ(LSCF)-Ce0.8Gd0.2O2-δ(GDC)为复合阴极的单电池,在400~700 ℃范围内,以加湿天然气(3% H2O)为燃料气,氧气为氧化气,测试了电池的放电性能。利用XRD、SEM、EDX等手段对复合阳极进行结构、化学相容性、微观型貌和碳元素分析。分析结果表明,符合阳极具有较好的化学相容性,且阳极和阴极具有较好的孔隙、孔道结构。EDX测试结果表明有少量的碳沉积。在600 ℃进行了电池的稳定性测试。测试结果表明,该电池在13 h的测试过程中功率无明显衰减,具有较好的稳定性。复合阳极单电池在600 ℃得到最大电流密度,为215.49 mA·cm-2;最大功率流密度为44.85 mW·cm-2。  相似文献   

3.
王亚楠  周和平 《无机化学学报》2008,24(10):1558-1563
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT.SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0-0.5)和Gd.0.8Sr0.2Co1-yFeyO3-δ(y=0-1),所合成的初始粉体在800℃下煅烧12 h后均形成了钙钛矿结构的单相固溶体.研究发现,Gd1-xSrxCoO3-δ(GSC)的电导率在600℃时达到了559 S·cm-1,由Ce0.8Cd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω·cm2和0.064Ω·cm2,活化能仅为87.8 kJ·mol-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3 离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Cd0.8Sr0.2CoO3-δ/GDC复合阴极材料.  相似文献   

4.
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT-SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0~0.5)和Gd0.8Sr0.2Co1-yFeyO3-δ(y=0~1),所合成的初始粉体在800℃下煅烧12h后均形成了钙钛矿结构的单相固溶体。研究发现,Gd0.8Sr0.2CoO3-δ(GSC)的电导率在600℃时达到了559S·cm^-1,由Ce0.8Gd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω·cm^2和0.064Ω·cm^2,活化能仅为87.8kJ·mol^-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3+离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Gd0.8Sr0.2CoO3-δ/GDC复合阴极材料。  相似文献   

5.
采用溶胶凝胶法制备了La0.7Sr0.3Cr1-xMnxO3-δ(x=0.3,0.4,0.5,0.6)系列阳极粉体。在1000℃下焙烧后,XRD结果显示粉体物相为单一的钙钛矿相。制备以La0.7Sr0.3Cr1-xMnxO3-δ为阳极,Ce0.8Sm0.2O1.9(SDC)为电解质,Pr0.6Sr0.4Co0.8Fe0.2O3-δ-SDC复合阴极的电解质支撑型固体氧化物燃料单电池。由扫描电子显微镜(SEM)观察表明单电池电解质致密,阳极孔径分布均匀,厚度约为20μm,多孔阴极厚度为10μm。采用直流四电极法测试以La0.7Sr0.3Cr0.5Mn0.5O3-δ为阳极用湿氢气作燃料时在800℃下获得最大输出功率为232.84 mW.cm-2,短路电流为0.92 A.cm-2。  相似文献   

6.
Ba0.5Sr0.5Co0.8Fe0.2O3-δ为阴极的中温固体氧化物燃料电池   总被引:1,自引:0,他引:1  
 通过在阴极与氧化钇稳定的氧化锆电解质间添加Gd0.1Ce0.9O1.95 (GDC)隔层,成功地将Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)阴极应用在中温固体氧化物燃料电池上. 由BSCF膜的高透氧率可知,BSCF在中温范围内具有很高的氧离子电导率. 在添加GDC隔层后,电池以空气为氧化剂时显示了很高的性能,极化电阻急剧下降,表明GDC隔层的添加是必要和有效的.  相似文献   

7.
采用溶胶-凝胶法合成了纳米粉体La1-xCexCr0.5Mn0.5O3-δ(x=0.05,0.10,0.15,0.20)(LCCM),并采用共压-共烧结法制备了以复合阳极Ni-La0.9Ce0.1Cr0.5Mn0.5O3-δ-Ce0.8Gd0.2O2-δ(GDC)为支撑、GDC为电解质、La0.8Sr0.2Co0.8Fe0.2O3-δ(LSCF)-GDC为复合阴极的单电池。利用XRD和SEM等方法对阳极材料进行了晶相结构、化学相容性、微观形貌分析。在500~750 ℃范围内,分别以湿天然气(3% H2O)和甲烷为燃料气,氧气为氧化气测试了单电池的电化学性能,同时检测了以甲烷为燃料气的阳极尾气组成。结果表明:复合阳极材料具有良好的化学相容性;阳极和阴极具有较好的孔隙结构。以天然气和甲烷为燃料气的单电池在700 ℃时最大电流密度分别为131.96 mA·cm-2,162.36 mA·cm-2; 最大比功率分别为28.61 mW·cm-2,31.03 mW·cm-2。在500~750 ℃范围内阳极尾气中均检测出CO,CO2,在700 ℃时CO,CO2含量达到最大值,分别为2.39254%,6.20891%。  相似文献   

8.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC)梯度复合阴极/Gd0.2Ce0.8O2/Sc0.1Zr0.9O1.95(ScSZ)/Gd0.2Ce0.8O2/LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC),组成梯度复合阴极对称电池.实验表明,在750 oC工作温度下单层70%LNF-30%GDC(文中均指质量百分比)复合阴极的极化电阻为0.581Ω·cm2,而三层60%LNF-40%GDC/70%LNF-30%GDC/100%LNF复合阴极的极化电阻最小(0.452Ω·cm2).由于阴极组成在ScSZ电解质和LNF阴极之间呈梯度变化,因此获得了最佳的阴极/电解质界面,大大加快了三相界面或气体/阴极/电解质三相接触点反应区的扩散,其电荷传递电阻Rct和浓差极化电阻Rd均减小,因而具有最低的阴极极化电阻值.  相似文献   

9.
采用EDTA-柠檬酸盐法制备了(Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG),并与Ce0.9Gd0.1O2-δ(CGO)形成复合阴极PLNCG-CGO。XRD和SEM分析结果表明PLNCG与CGO在1 000℃具有较好的化学相容性。电化学阻抗测试结果表明PLNCG-30%CGO复合阴极在700℃的极化电阻为0.092Ω·cm2;过电位为39.3 m V时,电流密度达到113.3 m A·cm-2。氧分压分析表明电极反应的速率控制步骤为电荷转移过程。阳极支撑单电池(Ni-CGO/CGO/PLNCG-30%CGO)在700℃的最大输出功率密度达到569 m W·cm-2,开路电压(OCV)为0.76 V。  相似文献   

10.
纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.  相似文献   

11.
纳米TiO2修饰的La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)阴极被直接应用于YSZ电解质电池上. TiO2可阻止LSCF和YSZ间的化学反应,抑制SrZrO3的形成. LSCF-0.25 wt% TiO2阴极电池在0.7 V和600°C下的电流密度是LSCF阴极电池的1.6倍.电化学阻抗谱结果表明, TiO2修饰显著加快了氧离子注入电解质的过程,这可能与TiO2抑制了阴极/电解质界面处高电阻SrZrO3层的形成有关.本文为在ZrO2基电解质上使用高性能的(La,Sr)(Co,Fe)O3阴极材料提供了一种简单有效的方法.  相似文献   

12.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ/Sc0.1Zr0.9O1.95/LaNi0.6Fe0.4O3-δ对称电池.以硝酸铈和硝酸钆为原料,柠檬酸作燃料,燃烧合成Gd0.2Ce0.8O2(GDC)包覆的LaNi0.6Fe0.4O3-δ(LNF)阴极.实验表明,在750oC工作温度下,纯LaNi0.6Fe0.4O3-δ阴极的极化电阻为0.70Ω.cm2,而21.3%(by mass,下同,如无特殊标注均为质量分数)GDC包覆的LNF-GDC复合阴极的极化电阻最小(0.13Ω.cm2),活化能最低(136.80 kJ.mol-1),故其阴极性能最佳.GDC的包覆加速了气体/阴极/电解质三相界面反应区的扩散过程,降低了阴极极化电阻.  相似文献   

13.
采用甘氨酸-硝酸盐法制备了Ce0.8Gd0.2O1.85(GDC82)阳极材料。用TGA-DSC对前驱体物料烧结过程进行分析。用XRD,SEM,直流四探针法,TPR等技术对材料的性能进行表征。前驱体物料经燃烧后,900℃下烧结4 h后,得到单一萤石结构的材料。在50~850℃范围内,GDC82材料在空气气氛下的电导率整体较小,且随温度的升高变化不大,在850℃为0.05 S.cm-1。GDC82在H2气氛下的总电导率整体增加,且随温度的升高而迅速增加,850℃达到0.4 S.cm-1。GDC82与电解质材料La1-xSrxGa1-yMgyO3-δ(LSGM)混合物在1200℃下烧结15 h后,有少量MgCe杂相生成。GDC82与La1-xSrxCr1-yMnyO3-δ(LSCM)阳极材料化学相容性较好。GDC82对氢气和甲烷具有较好的催化氧化效果。  相似文献   

14.
利用溶胶-凝胶方法合成了Ce0.8Pr0.2O2-δ固溶体, XRD结果表明,经200 ℃焙烧就已经形成立方萤石结构固溶体,晶粒尺寸为8.1 nm, 随焙烧温度的升高,晶粒尺寸增大. X射线光电子能谱(XPS)结果表明,样品中存在氧离子缺位,铈离子主要为Ce4 离子,镨离子以混合价态Pr3 和Pr4 存在. 固溶体Ce0.8Pr0.2O2-δ的拉曼谱(Raman)观察到4个峰,458和1140 cm-1峰为特征F2g振动谱带,较宽的570和187 cm-1峰对应氧离子缺位及引起的不对称振动. 交流阻抗谱表明固溶体Ce0.8Pr0.2O2-δ在600 ℃时的电导率为1.44×10-3 S·cm-1, 活化能为Ea=0.67 eV (650~800 ℃), Ea=0.91 eV (400~600 ℃).  相似文献   

15.
采用阴极轻度过烧工艺制备了Sm_(0.5)Sr_(0.5)CoO_(3-δ)(SSC)阴极,并在单电池运行条件下利用25%CO2(体积比)对电池阴极进行了原位处理.XRD及TG分析表明,在600℃下,CO2的原位处理导致SSC阴极表面有少量SrCO3和Co3O4生成.空气吹扫下,SrCoO3-δ和Co3O4的存在都有效地改变了阴极材料的表面物理化学性质.阴极电催化剂上氧还原速率的加快显著地降低了阴极的极化电阻,从而导致电池的功率密度提高了约20%.  相似文献   

16.
采用硝酸盐-甘氨酸溶液燃烧法合成了La0.6Sr0.4Co0.2Fe0.8O3-?啄(LSCF)前驱粉体, 通过XRD、BET、FESEM及激光粒度仪等手段对粉体进行表征. 结果表明, 所合成的LSCF粉体为纯钙钛矿结构, 具有高达22.9 m2·g-1的比表面积, 粒度均匀, 平均颗粒尺寸为175 nm. 非等温烧结实验表明该粉体具有良好的低温烧结活性. 在阳极NiO-YSZ(氧化钇稳定氧化锆)负载的电解质YSZ上, 于800 ℃烧结制备LSCF阴极组成的单元电池Ni-YSZ/YSZ/LSCF, 在700 ℃下以H2作燃料时具有良好的电池性能, 最大功率密度为0.97 W·cm-2, 在0.7 V时的功率密度约达到0.83 W·cm-2. 这种无中间缓冲层的低温制备LSCF阴极方法, 简化了电池结构及其制备过程, 同时提高了电池的性能.  相似文献   

17.
用高温固相反应法合成了非化学计量组成的Ba1.05Ce0.8Ho0.2O3-α固体电解质,用粉末X-射线衍射方法鉴定了其晶体结构.用交流阻抗谱技术研究了材料在600℃~1000℃下、湿润氢气和湿润空气气氛中的导电性,测定了其氢–空气燃料电池性能,并与BaCe0.8Ho0.2O3-α的电性能进行了比较.结果表明,Ba1.05Ce0.8Ho0.2O3-α材料为钙钛矿型斜方晶单相结构.在600℃~1000℃温度范围内、湿润氢气和湿润空气气氛中,该材料的电导率高于BaCe0.8Ho0.2O3-α的电导率(1000℃下,在湿润的氢气气氛中它们的电导率分别为2.66×10-2和1.94×10-2 S·cm-1;在湿润的空气气氛中分别为4.31×10-2和1.93×10-2 S·cm-1);以该材料为固体电解质的氢–空气燃料电池性能优于以BaCe0.8Ho0.2O3-α为固体电解质的氢–空气燃料电池性能(1000℃下,它们的最大氢–空气燃料电池输出功率密度分别为139.8和85.8 mW·cm-2).  相似文献   

18.
采用改进的溶胶-凝胶法合成固体氧化物燃料电池阴极系粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(PSCF)(z=0,0.02,0.05,0.1)。使用X射线衍射(XRD)、扫描电子显微镜(SEM)对其相结构与形貌进行了分析,结果表明:900℃以上焙烧后的阴极粉体Pr0.6-zSr0.4Co0.8Fe0.2O3-δ(z=0,0.02,0.05,0.1)为单一的钙钛矿结构。1000℃烧结的样品内粒子分布比较均匀,且颗粒内部存在一定程度的空隙,并与电解质附着情况良好。用直流四电极法测试阴极体系样品在400~750℃的电导率,发现各试样混合离子电子电导率均高于786 S.cm-1,能够满足固体氧化物燃料电池对阴极电导率的要求。用交流阻抗法测定PSCF-Ce0.8Sm0.2O1.9体系样品的阻抗谱,得到1000℃烧结的阴极体系对称电池在测试温度为750℃z=0,z=0.02,z=0.05时的极化电阻分别为0.041,0.040,0.034Ω.cm-2。  相似文献   

19.
工作温度在800℃以下的固体氧化物燃料电池可采用铁素体不锈钢SUS430(含Cr16%-17%(质量分数))作为连接体材料,然而不锈钢在高温下极易发生氧化形成Cr2O3和Fe3O4等尖晶石相化合物,从而大大地降低了电池的性能。本研究的主要目的是通过空气等离子喷涂(APS)La0.8Sr0.2Mn(Fe)O3-δ(LSM20)和La0.8Sr0.2Mn(Fe)O3-δ(LSF20)保护性涂层来降低合金的氧化生长速率,尤其是减少Cr2O3相的生长。采用XRD和SEM/EDX表征了氧化层的相组成和微观结构特征。在800℃空气中进行了热震实验,经50次循环,LSM20和LSF20涂层合金十分稳定,而SUS430合金氧化层表现出明显地剥落和失重现象。LSF20涂层具有明显的氧化增重速率慢,氧化后界面电阻低,能有效地抑制Cr向合金表面扩散等优点,在800℃空气中氧化1000h后,LSF20涂层合金的界面电阻比LSM20涂层合金的降低了23倍。  相似文献   

20.
以研究与Sr,Mg掺杂LaGaO3(LSGM)电解质匹配的阳极材料为出发点,系统研究了Ce1-xTmxO2-δ(Tm=Cu,Mn,Fe)固溶体的晶体结构、热化学稳定性、电化学性能和单电池发电实验。柠檬酸法合成的Ce1-xTmxO2-δ化合物在x<0.2时均为单相材料,与LSGM电解质有良好的热化学相容性。采用交流阻抗法研究了阳极材料的电化学性能,金属元素掺杂可以显著地改善CeO2电化学性能,Fe元素掺杂阳极材料极化电阻最小,随着元素掺杂量的增加以及氢气增湿,极化电阻减小。采用电解质支撑结构单电池进行发电实验,在800℃时,以Ce0.8Fe0.2O2-δ作为阳极的单电池最高功率密度可达98 mW.cm-2,表明该材料作为IT-SOFC的阳极材料具有一定的可行性,有望成为适合LSGM电解质的阳极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号