首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用激光光解-激光诱导荧光方法研究了室温下(T=293 K) HCF(X~1A)自由基与SO2分子的反应动力学. 实验中HCF(X~1A)自由基是由213 nm激光光解HCFBr2产生的, 用激光诱导荧光(LIF)检测HCF(X~1A)自由基的相对浓度随着反应时间的变化, 得到此反应的二级反应速率常数为: k=(1.81±0.15)×10-12 cm3•molecule-1•s-1, 体系总压为1862 Pa. 高精度理论计算表明, HCF(X~1A)和SO2分子反应的机理是典型的加成-消除反应. 我们运用RRKM-TST理论计算了此二级反应速率常数的温度效应和压力效应, 计算结果和室温下测定的二级反应速率常数符合得较好.  相似文献   

2.
用激光光解-激光诱导荧光方法研究了室温下(T=293 K) HCF(X~1A)自由基与SO2分子的反应动力学. 实验中HCF(X~1A)自由基是由213 nm激光光解HCFBr2产生的, 用激光诱导荧光(LIF)检测HCF(X~1A)自由基的相对浓度随着反应时间的变化, 得到此反应的二级反应速率常数为: k=(1.81±0.15)×10-12 cm3•molecule-1•s-1, 体系总压为1862 Pa. 高精度理论计算表明, HCF(X~1A)和SO2分子反应的机理是典型的加成-消除反应. 我们运用RRKM-TST理论计算了此二级反应速率常数的温度效应和压力效应, 计算结果和室温下测定的二级反应速率常数符合得较好.  相似文献   

3.
张力  陈朗  王晨  伍俊英 《物理化学学报》2013,29(6):1145-1153
研究六硝基六氮杂异伍兹烷(CL-20)晶体不同晶型在不同温度下的反应机理, 对于深入认识含能材料在极端条件下的冲击起爆、冲击点火和爆轰过程等具有重要意义. 基于反应力场, 研究水分子在纯α相CL-20及其水合物的晶体结构中数量随时间的变换, 分析水分子对两种体系的初始分解和第二阶段的分解路径的影响. 计算结果表明: CL-20 分子的初始分解路径与水分子无关, 第二阶段的分解反应与水分子有关. 在低温(T<1500 K)下, 水分子对两种体系没有影响, 二者的初始分解路径均为N-NO2键生成NO2自由基; 在1500 K≤T≤2500 K时, 水分子作为反应物或与NO2、、OH自由基等组成催化体系, 生成O2、H2O2等产物, 加速水合物体系在高温下的第二阶段反应, 使得高温下水合物体系的化学反应速率和反应生成的NO2自由基的数量比纯CL-20体系的化学反应速率和反应生成的NO2自由基的数量大; 在T>2500 K时, 水分子的催化反应抑制CL-20初始分解反应, 使得在3000 K时纯CL-20体系的反应速率大于水合物体系中CL-20的反应速率.  相似文献   

4.
运用脉冲激光光解-激光诱导荧光(PLP-LIF)的方法在293-573 K的温度范围内测量了C2(X1Σg+)自由基与不饱和碳氢化合物(C2H4和C2H2)气相反应的双分子反应速率常数. 获得的速率常数可以用Arrhenius 公式表达如下(单位: cm3·molecule-1·s-1): k(C2H4)=(1.16±0.10)×10-10exp[(290.68±9.72)/T], k(C2H2)=(1.36±0.02)×10-10exp[(263.85±7.60)/T], 误差为2σ. 由获得的双分子反应速率常数及其所呈现的负温度效应, 我们认为在293-573 K温度范围内C2(X1Σg+)自由基和不饱和碳氢化合物的反应遵循加成机理.  相似文献   

5.
郭丽  虞忠衡  朱士正  陈庆云 《化学学报》2005,63(10):897-902
用密度泛函理论研究了CF3SO3CF2CF3+F的碳氧键断裂反应的机理. 首先, 用DFT方法优化了反应物、中间体、过渡态、产物的平衡构型, 分析了碳氧键断裂反应的势能面变化. 发现在SN2反应机理中, 除了S—O断裂SN2反应外, 引起C—O键断裂的同面进攻也是一个可能的反应途径. 理论计算表明, 最终反应的产物是受热力学控制的, S—O键的断裂绝对地优于C—O的断裂. 因此, C—O断裂的同面机理虽然是可能的, 但却难以被实验观察到. 本文还讨论了端基 —F3在同面SN2反应中的邻位效应, 以及基组对这个效应的影响.  相似文献   

6.
用密度泛函UB3LYP/6-311++G**方法计算研究了气相中CrO2+ (2A1/4A")活化甲烷CH键的微观机理, 找到了四条反应通道. 对其中涉及的两态反应(TSR)进行了分析, 并对影响反应机理和反应速率的势能面交叉现象(potential energy surfaces crossing)进行了详细讨论, 进而运用Hammond假设和Yoshizawa等的内禀坐标单点垂直激发计算的方法找出了一系列势能面交叉点[crossing points (CPs)], 并作了相应的讨论. 进一步用碎片分子轨道理论[fragment molecular orbital (FMO)]对TS1中的轨道相互作用进行了分析, 解释了CrO2+活化甲烷CH键的机理.  相似文献   

7.
以LiBH4和MnCl2为初始原料, 采用反应球磨法制备了LiMn(BH4)3/2LiCl复合物, 并系统地研究了该复合物的脱氢性能及含钛催化剂的掺杂对其脱氢性能的影响. 结果表明: LiMn(BH4)3/2LiCl复合物是由非晶态的LiMn(BH4)3和晶态的LiCl组成, 在135-190 °C分解, 分解反应的活化能为114.0 kJ·mol-1; LiMn(BH4)3/2LiCl复合物分解失重约7.0% (w). 组分分析表明除H2外, 释放的气体中还含有4.0% (摩尔分数, x)的B2H6. B2H6的生成是该复合物失重超过其理论储氢容量6.3% (w)的原因; 进一步研究发现, 含钛催化剂(TiF3、TiC、TiN和TiO2)中, 仅TiF3能够催化LiMn(BH4)3/2LiCl复合物的分解反应, 使其起始分解温度和分解反应活化能分别降低至125 °C和104.0 kJ·mol-1. 这主要归因于TiF3中的Ti原子取代了LiMn(BH4)3中的部分Li原子, 并在局域形成了易于分解的Ti(BH4)3.  相似文献   

8.
NO2气相硝化金刚烷的计算研究   总被引:3,自引:0,他引:3  
运用密度泛函理论(DFT)和半经验MO-PM3方法研究了NO2气相硝化金刚烷反应机理. 计算结果表明, NO2不能直接取代金刚烷H; 在B3LYP/6-311++G(3df,2pd)//B3LYP/6-31G* 较高水平下, 对三个可能机理的反应势垒(Ea)的精确计算表明, 该反应的决速步骤为NO2中O和N进攻1-H的竞争过程, 且1-硝基金刚烷为主要产物. NO2中O进攻1-H决速反应过程中, 分子几何、原子自然电荷及IR光谱变化表明, C—H键的断裂和N—H键的形成是一个协同过程; 参与新键形成和旧键断裂原子C(1), H(11), O(28), O(29)和N(27)的原子自然电荷及与其相关的键长、键角有明显的变化. 反应过程中体系偶极矩的变化表明, 极性溶剂能降低反应势垒, 有利于反应的进行.  相似文献   

9.
熊忠华  罗德礼  陈琦  郑秀梅 《化学学报》2006,64(22):2235-2240
在有关实验结果的基础上提出了U原子和CO分子的各种可能反应通道, 然后采用第一性原理对反应通道上的各物种的几何构型、谐振频率以及总能量进行了计算和研究, 计算结果表明, 初级和次级反应的稳定产物分别为CUO和(η2-C2)UO2. 提出了最可能反应通道为U原子以C端或侧位进攻CO分子引起反应, 并用分子轨道理论解释了该反应机理.  相似文献   

10.
考虑取代基的位置和电子效应对反应体系的影响, 本文系统地研究了16e化合物Cp*Ir(S2C2B10H10) (1)与邻、间位取代苯基叠氮的反应。研究结果表明:与邻、间位取代苯基叠氮反应均生成苯环邻位碳发生C-H 活化形成C-S 键的金属配合物。这些配合物通过核磁(1H、11B、13C)、红外、质谱、元素分析和单晶结构解析进行了全面地表征。在光照反应结果的基础上, 提出了形成这类产物的自由基机理。  相似文献   

11.
气相中CrO2+和H2反应的理论研究   总被引:3,自引:0,他引:3  
用密度泛函UB3LYP/6-311++G(3df, 3pdpd)//6-311G(2dd, p)方法计算研究了在二重态和四重态两个势能面上的气相反应:CrO2+ + H2→CrO++ H2O. 对影响反应机理和反应速率的势能面交叉进行了讨论, 并运用Hammond 假设和Yoshizawa 等的内禀反应坐标(IRC)单点垂直激发计算的方法找出了势能面交叉点(crossing point (CP)). 运用碎片分子轨道(fragment molecular orbital(FMO))理论, 对初始复合物2IM1和4IM1的轨道相关进行了分析, 解释了CrO2+活化H—H σ键及H2迁移的机理.  相似文献   

12.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

13.
应用密度泛函理论DFT/B3LYP对HO2+NO2反应进行了研究, 在B3LYP/6-311G**和CCSD(T)/6-311G**水平上计算了HO2自由基与NO2分子反应的单重态和三重态反应势能面, 计算结果表明, 单重态反应势能面中的直接氢抽提反应机理是此反应的主要反应通道, 即HO2自由基的氢原子转移到NO2分子的氮原子上形成产物P1 (HNO23O2), 另一个可能的反应通道是单重态反应势能面上HO2中的端位氧原子进攻NO2分子中的氮原子形成中间体1 (HOONO2), 接着中间体1 (HOONO2)经过氢转移形成产物P2 (trans-HONO+3O2), 以上两个反应通道都是放热反应通道, 分别放热90.14和132.52 kJ•mol-1.  相似文献   

14.
本文设计合成了两种以聚吡唑硼酸盐、吡唑为配体的铜配合物Cu2[ μ-pz]2[HB(pz)3]2(1)和Cu[B(pz)4]2(2)(pz:吡唑(C3H4N2))。运用元素分析、红外光谱对配合物进行了表征,并用X-ray衍射测定了它们的晶体结构。非等温热分解动力学研究表明:配合物1的热分解反应分两步,配合物2的热分解反应一步进行。通过计算,配合物1热分解的第一步反应的可能机理为成核与生长,n=1/4;第二步反应的可能机理为化学反应。其非等温动力学方程分别为:dα/dT=A/β e-E/RT·1/4(1-α)[-ln(1-α)]-3和dα/dT=A/β e-E/RT·(1-α)2。分解反应的表观活化能分别是520.37 kJ·mol-1和149.65 kJ·mol-1;指前因子lnA分别是118.06 s-1和28.10 s-1。配合物2热分解的可能机理为化学反应。其非等温动力学方程为:dα/dT=A/β e-E/RT·(1-α)2。分解反应的表观活化能是111.41 kJ·mol-1;指前因子lnA是21.20 s-1。  相似文献   

15.
西门子法生产多晶硅的热力学   总被引:3,自引:0,他引:3  
应用有关热力学数据研究了与西门子法相关的“Si-Cl-H”三元系的复杂化学反应,分别绘制了在体系中存在的15个化学反应的ΔrGm?-T图和Kp?-T图;还给出在不同压强和不同SiHCl3/H2初始比例时的平衡气相成分、η-产率随温度的变化图以及在不同的压强下α因数随SiHCl3初始物质的量的分数的变化图。热力学研究结果表明,高温、低压和小的SiHCl3/H2初始物质的量的比对SiHCl3还原有利;α因数随着SiHCl3初始物质的量的比x40的增大而增大。  相似文献   

16.
通过溶液法合成了一个新颖的组氨酸12-硅钨杂多酸盐((HisH2)2SiW12O40·6H2O)单晶超分子化合物. 利用元素分析、热重-差热分析和X射线单晶衍射测试分别对其组成、热稳定性和结构进行了表征. 实验结果表明:该超分子化合物的组成为C12H34N6O50SiW12. 空气中, 在135 °C以下稳定. 它属于单斜晶系(空间群为C2/c), 晶胞参数为a=2.44005(18) nm, b=1.29788(10) nm, c=1.86898(14) nm, β=124.0380(10)°, V=4.9048(6) nm3,Z=4 和Dc=4.465 g·cm-3. 基于F2的最终统计: 拟合优度(GOF)=1.268, R1=0.0344 和wR2=0.0851 (I>2σ(I)). 该单晶超分子化合物的基本结构单元由一个[SiW12O40]4-多阴离子和两个质子化的[H2His]2+有机阳离子以及结晶水组成. 他们之间通过氢键的作用组装成三维网络结构. 在紫外光照射下, 样品具有光致变色性质. 通过对变色样品电子自旋共振谱的分析, 我们提出了一个可能的光致变色机理.  相似文献   

17.
利用三氰基铁酸盐(Bu4N)[Fe(Tp)(CN)3](Tp=氢化三(1-吡唑基)硼酸)与配体2,9-二吡唑基-1,10-菲咯啉(dpzpen)以及高氯酸镍反应合成了一例氰根桥联的Fe4Ni2六核配合物[Fe4Ni2(Tp)4(CN)12(dpzpen)2]·12H2O·3CH3OH(1)。结构研究表明配合物1具有近似菱形的Fe2Ni2骨架结构,另外2个Fe(Ⅲ)则通过氰根延伸在菱形的外侧。磁性研究表明在配合物1中氰根桥联的Fe(Ⅲ)和Ni(Ⅱ)表现出铁磁相互作用。更为重要的是,基于配合物1的结构模型,对它的变温磁化率数据进行拟合得到了不同Fe(Ⅲ)-Ni(Ⅱ)之间的磁耦合常数,得到的最佳磁耦合常数J3d (15.73 cm-1)>J2d (3.53 cm-1)≈J1d (3.50 cm-1)与Ni—N键的键长以及Ni—N≡C键角的变化趋势有关(J3d: 0.206 5 nm,169.8°; J2d: 0.206 2 nm,163.1°; J1d: 0.198 7 nm,161.6°)。以上结果表明Ni—N键长越短,Ni—N≡C键角越大,Fe(Ⅲ)与Ni(Ⅱ)之间的铁磁耦合越强。  相似文献   

18.
为应用热爆炸临界温升速率(dT/dt)Tb评价含能材料(EMs)的热安全性, 得到计算(dT/dt)Tb值的基本数据, 用合理的假设, 由Semenov的热爆炸理论和9 个自催化反应速率方程[dα/dt=Aexp(-E/RT)α(1-α) (I), dα/dt=Aexp(-E/RT)(1-α)n(1+Kcatα) (II), dα/dt=Aexp(-E/RT)[αa-(1-α)n)] (III), dα/dt=A1exp(-Ea1/RT)(1-α)+A2exp(-Ea2/RT)α(1-α) (IV), dα/dt=A1exp(-Ea1/RT)(1-α)m+A2exp(-Ea2/RT)αn(1-α)p (V), dα/dt=Aexp(-E/RT)(1-α) (VI), dα/dt=Aexp(-E/RT)(1-α)n (VII), dα/dt=A1exp(-Ea1/RT)+A2exp(-Ea2/RT)(1-α) (VII), dα/dt=A1exp(-Ea1/RT)+A2exp(-Ea2/RT)α(1-α) (IX)]导出了计算(dT/dt)Tb值的9 个表达式. 提出了从不同恒速升温速率(β)条件下的差示扫描量热(DSC)曲线数据计算/确定EMs自催化分解反应的动力学参数和自催化分解转向热爆炸时的(dT/dt)Tb的方法. 由DSC曲线数据的分析得到了用于计算(dT/dt)Tb值的β→0 时的onset 温度(Te0),热爆炸临界温度(Tb)和相应于Tb时的转化率(αb). 分别用线性最小二乘法和信赖域方法得到方程(I)和(VI)及方程(II)-(V)和方程(VII)-(IX)中的自催化分解反应动力学参数. 用上述基础数据得到了EMs的(dT/dt)Tb值. 结果表明: (1) 在非等温DSC条件下硝化棉(NC, 13.54% N)分解反应可用表观经验级数自催化反应速率方程dα/dt=1015.82exp(-170020/RT)(1-α)1.11+1015.82exp(-157140/RT)α1.51(1-α)2.51描述; (2) NC (13.54% N)自催化分解转向热爆炸时的(dT/dt)Tb值为0.103 K·s-1.  相似文献   

19.
研究了乙酰乙酸乙酯(AA)-BrO3--Mn2+-H2SO4体系不经过诱导期而直接进入振荡状态的非线性化学反应新特征。测定了各物种的起振浓度范围及最佳反应条件。升高温度T,振荡周期tp、寿命tl均显著缩短,且ln(1/tp)与(1/T)具有良好线性关系,周期表观活化参数为41.94 kJ·mol-1。Ag+、维生素C(Vc)、葡萄糖(G)、H2O2、C2H5OH等共存时,或使振荡周期增长,或具有显著的抑制作用。另外,AA的酸性水溶液放置120~720 min后重新参与振荡反应时,可产生诱导期,甚至抑制振荡反应, 表明AA的水解性对振荡反应有一定的影响。最后结合FKN机理,对本振荡反应机理进行了初步探讨。  相似文献   

20.
合成了标题化合物Cu(S2CNC4H8NC2H5)2,得到深棕色柱状晶体。晶体属三斜晶系,空间群为P1。中心Cu(Ⅱ)离子分别与来 自2个N′-乙基-N-哌嗪基二硫代氨基甲酸的4个硫原子配位,形成略微扭曲的平面四方配位构型。4个Cu-S键的键长范围0.220 10(11)~0.220 34(13) nm;Cu-S键的FT-Raman伸缩振动峰在134.921 cm-1;ESR谱表明Cu(Ⅱ)离子处于对称中心;其局部配位构型属于D2h群;热分析表明标题化合物在753.15 ℃时分解为金属Cu。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号