共查询到18条相似文献,搜索用时 62 毫秒
1.
在锂离子电池电解液1 mol·L-1 LiPF6/(碳酸乙烯酯(EC)+碳酸二乙酯(DEC)+碳酸甲乙酯(EMC) (1:1:1,体积比))中分别添加1,2-二甲氧基-4-硝基苯(DMNB1)和1,4-二甲氧基-2-硝基苯(DMNB2)作为防过充添加剂.采用循环伏安(CV)、恒流充放电、过充测试、电化学阻抗谱(EIS)、扫描电子显微镜(SEM)等手段研究了DMNB1和DMNB2 的防过充效果, 以及添加剂与LiNi1/3Co1/3Mn1/3O2材料的相容性. 结果表明: DMNB1 和DMNB2 的氧化电位都在4.3 V (vs Li/Li+)以上, 且均能显著提高电池的过充保护性能. 100%过充和5 V截止电压过充测试表明, DMNB1 的防过充性能优于DMNB2. 采用基础电解液、添加0.1 mol·L-1 DMNB1 和添加0.1 mol·L-1DMNB2 电解液的LiNi1/3Co1/3Mn1/3O2/Li 电池, 0.2C 倍率下循环100 次, 容量保持率分别为98.4%、95.9%和68.1%. 证明硝基在添加剂苯环上的取代位置和其电化学性能之间有着密切联系. 相似文献
2.
3.
4.
采用密度泛函理论B3LYP方法,研究了锡苯和铅苯的[2+2],[4+2]及[4+4]二聚反应的微观机理和势能剖面,考察了Sn(Pb)原子上的2,4,6-三甲基苯基(Mes)取代基对反应势能剖面的影响.研究结果表明,所有反应均为协同过程,且大多数情况下,2个C—Sn(Pb)键同步形成.[2+2]和[4+2]反应在热力学和动力学上均比相应的[4+4]反应容易进行,而[4+2]反应在动力学上比相应的[2+2]反应有利.Sn(Pb)原子上的Mes取代基在热力学和动力学上均不利于反应的进行.铅苯的动力学稳定性与锡苯相当,但其热力学稳定性高于锡苯. 相似文献
5.
6.
采用密度泛函理论(DFT)中的B3LYP方法对CuI/BtH催化苯硫酚与对甲氧基溴苯C–S偶联合成(4-甲氧基)(苯基)硫醚反应机理进行了理论研究.在6-31+G(d)基组水平上,全参数优化了气相条件和N,N-二甲基甲酰胺(DMF)溶剂化条件下反应机理中所有反应物、过渡态、中间体和产物构型,对优化后各化合物的构型在B3LYP/6-311++G(d,p)基组下进行了单点能计算和零点能矫正,通过能量和振动频率分析以及内禀反应坐标(IRC)计算证实了中间体和过渡态的合理性.并且在优化计算相同基组水平上,应用自然键轨道(NBO)理论和分子中的原子(AIM)理论分析了复合物的成键特征和轨道间相互作用.在CuI单独催化此反应的机理中,计算得到一条反应路径,控制步骤所需活化能是180.49 kJ/mol(sol).而当CuI/BtH共同催化反应时,计算得到两条反应通道IA和IB,其中IA为最优反应通道,控制步骤所需活化能为101.77kJ/mol(sol);IB反应通道控制步骤活化能为143.78 kJ/mol(sol).配体苯并三唑(BtH)加入反应有效地降低了反应控制步骤所需活化能,同时有利于产物和催化剂的分离,这与实验所得结论一致. 相似文献
7.
通过在锂离子电池电解液中添加4-溴苯甲醚(4-Bromoanisole, 简称4BA)来提高锂离子电池的过充保护能力. 对电池分别进行了过充实验、循环伏安扫描、红外光谱分析、交流阻抗和容量特性测试, 实验结果表明, 在1 mol8226;L-1 LiPF6/EC+DEC+DMC(质量比1/1/1)中添加5% 的4BA(质量分数)时, 当外加电压为4.4 V(相对于Li/Li+)时, 4BA开始发生电聚合反应且生成高分子聚合物膜, 使电池内阻增大而阻止电压的升高, 从而使电池处于比较安全的状态. 该体系正常充放电过程中, 添加5%的4BA对电池容量特性基本没有影响, 4BA 的防过充机理为阻断机理. 相似文献
8.
成功开发一种由容易得到的2-(3,5-二甲氧基苄基)丙二酸二乙酯为原料合成5,7-二甲氧基1-茚酮的有效新方法。将原料溶解于甲磺酸中,加热到100℃反应2 h收率可以达到95%。本反应所需原料廉价、后处理简单、对设备要求不高,适用于工业化生产。另外,文中还提出了该反应可能的反应机理。 相似文献
9.
采用密度泛函理论方法在B3LYP/6-311++G(d,p)水平上, 研究了硅苯与HX (X=F, OH, NH2)的1,2-及1,4-加成反应的微观机理和势能剖面, 考察了Si 原子上的取代基及四氢呋喃溶剂对反应势能剖面的影响. 研究结果表明, 标题反应有两种可能的机理: (1) 硅苯与一个HX (X=F, OH, NH2)分子先形成中间复合物, 然后经过四元环过渡态(机理1)生成最终产物; (2) 硅苯与两个HX分子先形成中间复合物, 然后经过六元环过渡态(机理2)生成另一中间复合物, 该中间复合物脱去一个HX分子形成最终产物. 机理2 在动力学上远较机理1 有利. 1,2-及1,4-加成产物哪种优先形成由动力学控制且与X基团的种类有关. HX在气相中参与加成反应从易到难的次序为: HF>H2O>NH3. Si 原子上具有较强供电子和吸电子性质的取代基, 在热力学和动力学上均有利于反应的进行, 但具有较大体积的2,4,6-三甲基苯基取代基对反应反而不利. 四氢呋喃溶剂在热力学上不利于硅苯与HX的1,2-及1,4-加成反应, 在动力学上对HF或H2O作为加成试剂的反应也不利, 但对NH3作为加成试剂的反应反而有利. 相似文献
10.
以邻香兰素为起始原料、经氧化裂解、付克反应及环合反应制得PDE-4抑制剂的中间体1-{8-甲氧基-2,3-二氢苯并[b][1,4]二噁烷-5-基}乙酮,总收率58.9%。 相似文献
11.
The electrochemical properties and overcharge protection mechanism of xylene as a new polymerizable electrolyte additive for overcharge protection of lithium ion batteries were studied by cyclic voltammetry tests, charge- discharge performance and battery power capacity measurements. It was found that when the battery was overcharged, xylene could electrochemically polymerize at the overcharge potential of 4.3—4.7 V (vs. Li/Li+) to form a thin polymer film on the surface of the cathode, thus preventing voltage runaway. On the other hand, the use of xylene as an overcharge protection electrolyte additive did not influence the normal performance of lithium ion batteries. 相似文献
12.
功能添加剂对锂离子电池的防过充电化学行为研究 总被引:1,自引:0,他引:1
研究了功能添加剂3-氯苯甲醚(3CA)和联苯(BP)联合使用在锂离子电池电解液中的防过充行为。通过采用微电极循环伏安法、动电位扫描分析、扫描电镜法和充放电法等手段研究表明:联苯和3-氯苯甲醚混合添加剂的聚合电位随3-氯苯甲醚含量的增加由4.7V前移至4.6V (vs. Li/Li+);电池在正常工作电压(2.75V~4.2V)下,添加剂不参与电池反应过程;当电压高于4.2V电池发生过充时,3-氯苯甲醚在电极表面首先发生氧化还原飞梭分流限压对电池进行过充保护;电压继续升高时,联苯在电极表面发生电聚合反应,生成的聚合膜表面光滑致密是电子的良导体能有效的阻止Li+的嵌入与脱出,并通过自放电使电池处于安全状态,防止电池过充发生爆炸。两种防过充机制共同作用,对电池实施多重护防,提高了电池的安全性能。 相似文献
13.
14.
设计合成了单氰基功能化的2, 5-二叔丁基-1-(β-氰基乙氧基)-4-甲氧基苯(RS-MCN)和双氰基功能化的2, 5-二叔丁基-1, 4-(β-氰基乙氧基)苯(RS-DCN),并用作氧化还原过充添加剂开展了其在锂离子电子中的应用研究。通过丙烯氰和2, 5-二叔丁基对苯二酚的迈克尔加成反应可高效合成RS-MCN和RS-DCN,氰乙基取代后的过充保护添加剂分子的可逆氧化还原电位分别为4.02、4.08 V(vs Li/Li+);并且单氰基取代的RS-MCN在商业碳酸酯电解液1 mol·L-1 LiPF6/EC+DEC+EMC(1:1:1,体积比)中的溶解度可高达0.3 mol·L-1。RSMCN和RS-DCN对LiFePO4/Li电池的过充保护性能和电极相容性也进行了深入的研究,实验结果表明:RSMCN具有更好的过充保护性能和电极相容性,其5 V截止电压过充保护时间可超过1200 h,100%过充保护大于90周循环;0.3 mol·L-1 RS-MCN的添加能使100%过充的LiFePO4/Li电池在2.5C倍率条件下正常循环,其放电比容量达153.5 mAh·g-1。此外,RS-MCN的添加对LiFePO4/Li电池在2.5-3.8 V条件下的循环性能有明显改善,添加有RS-MCN的电池在60周的循环后容量保持率高达94.4%,而商业电解液的电池在60周循环后的容量保持率降至84.3%。因此,氰基功能化RS-MCN是一类具有潜在应用前景的过充保护添加剂。 相似文献
15.
在密度泛函理论B3LYP/6-31G*基组下,研究ClONO2+H→HONO2+Cl和ClONO2+H→OH+ClONO(cis)及ClONO2+H→OH+ClONO(trans)的反应机理.计算得到各可能反应途径的过渡态,并经过内禀反应坐标(IRC)分析加以证实.三个反应的活化能垒(分别为19.5,20.0和23.2kJ·mol-1)相差不大,可认为同时发生.但第一个反应放出的热量较多,可以看成是反应的主通道. 相似文献
16.
采用密度泛函方法(DFT)在M06-2X/def2-TZVPP//B3LYP/def2-TZVPP+ZPE水平下, 对以开环的(η5-C5H7)2Ru为前驱体生成闭环(η5-C5H5)2Ru的各种可能的反应路径进行了详细的研究. 最终确定其反应机理为: (η5-C5H7)2Ru的一个η5-C5H7发生端碳成键的成环反应形成(η3-C5H7)Ru(η5-C5H7), 经过两步氢原子迁移到Ru原子上, 之后脱掉一个氢气分子形成(η5-C5H5)Ru(η5-C5H7), 而后另一个η5-C5H7再重复成环并进行两步氢迁移以及氢气分子消除而得到最终的产物(η5-C5H5)2Ru. 相似文献
17.
Cu催化水煤气的变换反应机理 总被引:1,自引:0,他引:1
采用密度泛函理论(DFT), 对Cu催化水煤气变换反应三种可能的微观机理进行了理论研究. 在GGA-PW91理论水平下优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型, 并通过频率分析对过渡态进行了验证. 研究结果表明, 甲酸根机理的可能性最小, 羧基机理与氧化还原机理的可能性较大, 且与氧化还原机理相比, 羧基机理因在反应过程中有中间体COOH(s)生成, 且它与OH(s)发生歧化反应仅需越过3.8 kJ·mol-1的活化能垒, 所以反应更易遵循这条路径进行. 相似文献
18.
利用密度泛函理论(DFT)计算研究了[Fe(MgBr)2]催化的邻氯苯乙稀与溴代苯基镁反应生成联芳化合物的交叉偶联反应的机理. 研究了两个机理. 机理A包括三个基本步骤: (I) 氧化[Fe(MgBr)2]生成[Ar-Fe(MgBr)],(II) 加成产生[Ar-(phenyl)-Fe(MgBr)2], (III) 还原消除回到[Fe(MgBr)2]. 机理B不形成[Ar-Fe(MgBr)]. 在第一步,溴代苯基镁在[Cl-Mg-Br]离解形成[Ar-Fe(MgBr)]之前直接进攻氧化加成后的中间体. 考虑溶剂效应后, 机理B优于机理A. 无论机理A还是机理B, 整个催化循环过程的决速步骤都是[Ar-(phenyl)-Fe(MgBr)2]的还原消除再生催化剂[Fe(MgBr)2]的步骤, 使用导体极化连续模型(CPCM)方法计算其在四氢呋喃溶剂中的吉布斯自由能(ΔGsol)是82.98 kJ·mol-1. 相似文献