首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
通过分子设计,经过几步大分子反应,在聚砜(PSF)侧链键合了双齿席夫碱(SB)配基,制得了双齿席夫碱配基功能化的聚砜(PSF-SB)。在此基础上,以PSF-SB为大分子配体,以邻菲咯啉(Phen)为小分子配体,与Eu(Ⅲ)离子螯合配位,分别制备了二元高分子-稀土发光配合物PSF-(SB)3-Eu(Ⅲ)与三元高分子-稀土发光配合物PSF-(SB)3-Eu(Ⅲ)-(Phen)1,采用红外光谱和紫外吸收光谱对配合物进行了表征。研究了配合物的荧光发射性能与发光机理。制备了配合物的固体薄膜,考察了固体薄膜的荧光发射性能。结果表明,大分子配基PSF-SB本身具有强的荧光发射,但与Eu(Ⅲ)离子配位后,其自身的荧光发射大为减弱,其与Eu(Ⅲ)离子所形成的二元或三元高分子-稀土配合物均能发射出很强的Eu(Ⅲ)离子的特征荧光,即键合在PSF侧链的双齿席夫碱配基能有效地产生分子内能量转移,强烈地敏化Eu(Ⅲ)离子的荧光发射。第二配体的协同配位效应与对配位水分子的置换作用使得三元配合物的荧光发射强度高于二元配合物。  相似文献   

2.
首先,通过苯甲醛(BA)改性的聚砜(BA-PSF)与氨基吡嗪(AP)发生席夫碱反应,制得了侧链含氨基吡嗪型双齿席夫碱配基(APSB)的功能化聚砜APSB-PSF。使用核磁共振氢谱(~1HNMR)、红外光谱(FT-IR)表征其化学结构。然后,以APSB-PSF为大分子配体,邻菲罗啉(Phen)为第二配体,使它们与Tb(Ⅲ)离子进行配位螯合反应,分别制备了二元高分子-稀土配合物Tb(Ⅲ)-(APSB)_3-PSF与三元配合物(Phen)_1-Tb(Ⅲ)-(APSB)_3-PSF,研究了配合物Tb(Ⅲ)-(APSB)_3-PSF和(Phen)_1-Tb(Ⅲ)-(APSB)_3-PSF的荧光发射特性与发光机理。实验结果表明,大分子配体APSB-PSF不但能够强烈地吸收紫外光,且其本身荧光强度很高;当APSB-PSF与Tb(Ⅲ)离子配位生成新的二元配合物后,其自身的吸光强度基本不变,但荧光强度却大为削弱,即能量发生了转移,该配合物同时发射出Tb(Ⅲ)离子的特征荧光,且由于接受了APSB-PSF转移的能量使其发光强度大大增强,即APSB-PSF对Tb(Ⅲ)离子发生了敏化作用。而配体APSB-PSF的三线态与Eu(Ⅲ)离子的共振能级不匹配,使APSB-PSF与Eu(Ⅲ)离子的配合物几乎不发射荧光。三元配合物不仅发射出Tb(Ⅲ)离子的特征荧光,且其发光强度高于二元配合物。  相似文献   

3.
在制备氯甲基化聚砜(CMPSF)的基础上,以对羟基苯甲醛(HBA)为试剂,通过亲核取代反应,将苯甲醛(BA)键合在聚砜侧链,制得改性聚砜PSF-BA;接着,又使3-氨基吡啶(AP)与PSF-BA的醛基发生席夫碱反应,在聚砜侧链合成与键合了双齿席夫碱(SB)配基,形成了侧链键合有双齿席夫碱配基的功能化聚砜PSFSB。采用红外光谱(FTIR)和核磁共振氢谱(1H-NMR)对其结构进行了表征。以大分子PSF-SB为第一配体,以邻菲罗啉(Phen)为第二配体,与Eu(Ⅲ)离子配位,分别制得了二元和三元高分子-稀土配合物PSF-(SB)3-Eu(Ⅲ)和PSF-(SB)3-Eu(Ⅲ)-(Phen)1,初步探索了配合物的荧光发射性能。本文重点研究了功能化聚砜PSF-SB的制备反应及表征,考察了主要因素对CMPSF与HBA之间亲核取代反应的影响规律,分析了反应机理,优化了反应条件。实验结果表明,对于CMPSF与HBA之间的亲核取代反应,极性较强的N,N-二甲基乙酰胺为适宜的溶剂,90℃为适宜的反应温度。大分子配体PSF-SB对Eu(Ⅲ)离子的荧光发射可产生明显的敏化作用,二元和三元高分子-稀土配合物都发射出较强的Eu(Ⅲ)离子特征荧光。  相似文献   

4.
查显宇  张丹丹  高保娇 《化学通报》2016,79(1):48-55,42
通过氯甲基化聚砜(CMPSF)与4-羟基水杨醛(HSA)的亲核取代反应,将水杨醛(SA)基团键合在聚砜侧链,制得改性聚砜PSF-SA;再经PSF-SA的醛基分别与苯胺(AN)和环己胺(CA)发生席夫碱反应,获得了两种侧链键合了水杨醛型双齿席夫碱配基的功能化聚砜PSF-SAN和PSF-SCA,产物的结构由红外光谱和核磁共振氢谱表征。以两种功能化聚砜为大分子配体,与Tb(Ⅲ)离子及Eu(Ⅲ)离子分别配位,制得了二元高分子-稀土配合物,初步探索了配合物的光致发光性能。本文重点研究了功能化聚砜PSF-SAN和PSFSCA的制备反应,考察与分析了主要因素对CMPSF与HSA之间亲核取代反应的影响规律。结果表明,对于该亲核取代反应,适宜的溶剂为极性较强的N,N-二甲基乙酰胺,80℃为适宜的反应温度。大分子配体PSFSAN对Eu(Ⅲ)离子的荧光发射产生强烈的敏化作用,配合物PSF-(SAN)_3-Eu(Ⅲ)发射红光;大分子配体PSF-SCA对Tb(Ⅲ)离子的荧光发射也产生敏化作用,配合物PSF-(SCA)_3-Tb(Ⅲ)发射绿光。  相似文献   

5.
通过三步大分子反应法,制备了糠醛缩苯胺型席夫碱功能聚砜和糠醛缩环己胺型席夫碱功能化聚砜。首先,通过傅克烷基化反应在聚砜(PSF)侧链键合氯甲基,制备氯甲基化聚砜CMPSF;以制备的氯甲基化聚砜为亲电试剂,与糠醛(FF)发生傅克烷基化反应,制备侧链键合有糠醛基团的功能化聚砜PSF-FF;使糠醛的醛基分别与苯胺(AN)和环己胺(CA)的氨基发生席夫碱反应,制备糠醛缩苯胺型席夫碱功能聚砜PSF-FA和糠醛缩环己胺型席夫碱功能化聚砜PSF-FC。用红外光谱(FTIR)和核磁共振氢谱(IHNMR)表征功能化聚砜的结构。在此基础上,以这两种功能化聚砜为大分子配体,分别与Eu(Ⅲ)离子和Tb(Ⅲ)离子进行配位,制备了二元配合物PSF-(FA)3-Eu(Ⅲ)、PSF-(FA)3-Tb(Ⅲ)和PSF-(FC)3-Eu(Ⅲ)、PSF-(FC)3-Tb(Ⅲ),初步探索了配合物的光致发光性能。重点研究了制备糠醛缩胺型功能化聚砜PSF-FA和PSF-FC的反应,考察分析了主要因素对CMPSF与FF之间傅克烷基化反应(属亲电取代反应)的影响规律。结果表明,对于该傅克烷基化反应,N,N-二甲基乙酰胺因极性较强为适宜的溶剂,反应适宜的温度为70℃。二元配合物PSF-(FA)3-Eu(Ⅲ)发射Eu(Ⅲ)离子特征荧光(红光),即大分子配体PSF-FA可敏化Eu(Ⅲ)离子的荧光发射,而PSF-(FA)_3-Tb(Ⅲ)无明显的荧光效果,大分子配体PSF-FA的三重态能级与Eu(Ⅲ)离子共振能级比较匹配;配合物PSF-(FC)3-Tb(Ⅲ)发射Tb(Ⅲ)离子的特征荧光(绿光),即大分子配体PSF-FC可敏化Tb(Ⅲ)离子的荧光发射,而PSF-(FA)_3-Eu(Ⅲ)无明显的荧光效果,大分子配体PSF-FC的三重态能级与Tb(Ⅲ)离子共振能级比较匹配。  相似文献   

6.
使氯甲基化聚砜(CMPSF)的氯甲基与乙醛酸(GA)的羧基发生酯化反应,将乙醛(AL)基团键合在聚砜侧链,制得改性聚砜PSF-AL;接着,又使3-氨基吡啶(AP)的伯氨基与PSF-AL的醛基发生席夫碱反应,在聚砜侧链合成与键合了具有特定结构的双齿席夫碱配基AA,从而获得了双齿席夫碱配基功能化聚砜PSF-AA,采用红外光谱(FTIR)和核磁共振氢谱(1H NMR)等技术手段对其结构进行了表征。 以功能化聚砜PSF-AA为大分子配体,与Tb(Ⅲ)离子及Eu(Ⅲ)离子分别配位,制得了二元高分子-稀土配合物PSF-(AA)3-Tb(Ⅲ)和PSF-(AA)3-Eu(Ⅲ),初步探索了两种配合物的光致发光性能。 重点研究了功能化聚砜PSF-AA的制备反应,考察与分析了主要因素对CMPSF与GA之间酯化反应的影响规律,优化了反应条件。 CMPSF与GA之间的酯化反应属氯烷的亲核取代反应,实验结果表明,适宜的溶剂为极性较强的N,N-二甲基乙酰胺,75 ℃为适宜的反应温度。 大分子配体PSF-AA对Eu(Ⅲ)离子不产生敏化作用,而对Tb(Ⅲ)离子的荧光发射则产生强烈的敏化作用,配合物PSF-(AA)3-Tb(Ⅲ)发射出较强的Tb(Ⅲ)离子的特征荧光,即表现出发射绿光的光致发光性能。  相似文献   

7.
以对氯甲基苯甲醛(CMBA)为试剂,使聚砜(PSF)发生Friedel-Crafts烷基化反应,将苯甲醛(BA)键合在PSF侧链,制得改性聚砜PSF-BA,并考察了主要因素对Friedel-Crafts烷基化反应的影响规律;然后,使PSF-BA的醛基分别与邻氨基苯酚(OAP)及间氨基苯酚(MAP)的氨基发生缩合反应,从而在PSF侧链实现了氨基酚型双齿席夫碱配基的同步合成与键合,获得了2种功能化聚砜PSF-BAOA和PSF-BAMA。采用红外光谱(FT-IR)和核磁氢谱(1 H-NMR)对功能化聚砜的化学结构进行了表征。最后,使大分子配体PSF-BAOA和PSF-BAMA分别与Eu(Ⅲ)离子发生配位反应,制备了光致发光二元高分子-稀土配合物PSF-(BAOA)3-Eu(Ⅲ)与PSF-(BAMA)3-Eu(Ⅲ)。结果表明:溶剂的极性有利于聚砜与CMBA之间的Friedel-Crafts烷基化反应,适宜的溶剂为N,N-二甲基乙酰胺;适宜的温度为70℃。大分子配体PSF-BAOA和PSFBAMA对Eu(Ⅲ)离子的荧光发射均会产生强烈的敏化作用,2种二元高分子-稀土配合物均发射出强烈的Eu(Ⅲ)离子特征荧光。  相似文献   

8.
以对氯甲基苯甲酸(CMBA)为试剂,通过Friedel-Crafts烷基化反应,将苯甲酸(BA)键合在聚砜(PSF)侧链,制得了改性聚砜BAPSF,并采用FT IR与1H NMR等方法对其结构进行了表征。通过与Tb3+配位,制得了高分子-稀土配合物BAPSF-Tb(Ⅲ),初步考察了该配合物的荧光发射特性。本文重点研究了聚砜的功能化改性反应,考察了主要因素对CMBA与PSF之间Friedel-Crafts烷基化反应的影响,分析了反应机理,优化了反应条件。实验结果表明,CMBA与PSF之间Friedel-Crafts烷基化反应顺利进行的适宜反应条件为:70℃,以N,N-二甲基乙酰胺(DMAC)为溶剂,SnCl4为催化剂。配合物BAPSF-Tb(Ⅲ)不仅发射出Tb3+的特征荧光,而且大分子配基BAPSF对Tb3+的荧光发射显示出很强的敏化作用。  相似文献   

9.
徐迪  高保娇  陈萍虹 《应用化学》2015,32(2):183-191
以1,4-二氯甲氧基丁烷为氯甲基化试剂,制备了氯甲基化聚苯乙烯(CMPS),使CMPS的氯甲基与对羟基苯甲醛(HBA)发生亲核取代反应,将苯甲醛(BA)键合在聚苯乙烯侧链,制得改性聚苯乙烯PS-BA;使PS-BA的醛基与3-氨基吡啶(AP)的伯氨基发生席夫碱反应,在聚苯乙烯侧链合成与键合了双齿席夫碱(SB)配基,制得了侧链键合有双齿席夫碱配基的功能化聚苯乙烯PS-SB。 采用红外光谱(FTIR)和核磁共振氢谱(1H NMR)对其结构进行了表征。 以大分子PS-SB为第一配体,以邻菲罗啉(Phen)为第二配体,与Eu(Ⅲ)离子配位,分别制得了二元和三元高分子-稀土配合物PS-(SB)3-Eu(Ⅲ)和PS-(SB)3-Eu(Ⅲ)-(Phen),初步探索了配合物的荧光发射性能。 实验结果表明,对于CMPS与HBA之间的亲核取代反应,使用极性较强的N,N-二甲基乙酰胺为溶剂比较适宜,80 ℃为适宜的反应温度。 大分子配体PS-SB对Eu(Ⅲ)离子的荧光发射可产生明显的敏化作用,二元和三元高分子-稀土配合物均发射出较强的Eu(Ⅲ)离子的特征荧光。  相似文献   

10.
通过氯甲基苯甲酸(CMBA)的Friedel-Crafts 烷基化反应,对聚苯乙烯(PS)进行了功能化改性,将苯甲酸(BA)键合在聚苯乙烯侧链,制得了改性聚苯乙烯(BAPS),采用红外光谱、核磁共振氢谱及紫外吸收光谱等测试技术对其进行了结构表征,考察了影响CMBA与PS之间Friedel-Crafts烷基化反应的主要因素。 结果表明,适宜的反应条件为:70 ℃,以N,N-二甲基乙酰胺为溶剂,SnCl4为催化剂。 使BAPS与Tb(Ⅲ)离子配位,制得高分子-稀土配合物BAPS-Tb(Ⅲ),该配合物不仅发射出Tb3+离子的特征荧光,而且大分子配基BAPS对Tb3+离子的荧光发射显示出很强的敏化作用。  相似文献   

11.
将硝基苯甲酸配基(NBA)键合在聚苯乙烯侧链,制得了硝基苯甲酸功能化的聚苯乙烯(PS-NBA),在此基础上使大分子配体PS-NBA与Eu(III)离子配位,制备了二元高分子-稀土配合物PS-(NBA)3-Eu(III),也以邻菲罗啉(Phen)为小分子配体,制备了三元高分子-稀土配合物PS-(NBA)3-Eu(III)-Phen1,重点研究了芳环上硝基取代基对高分子-稀土配合物光致发光性能的影响.研究结果表明,芳环上的硝基取代基对以Eu(III)为中心离子的苯甲酸功能化聚苯乙烯-稀土配合物的发光性能具有双重影响.硝基取代基通过配基内的电荷转移(ILCT),耗损配基激发单线态的能量,有效降低苯甲酸配基的三线态能量,使配基NBA最低三线态能级与Eu(III)离子共振能级之间的匹配程度显著增强,对Eu(III)离子的荧光发射发生强敏化作用,使配合物PS-(NBA)3-Eu(III)以及PS-(NBA)3-Eu(III)-Phen1产生了高强度的荧光发射,显现出硝基取代基对配合物发光性能的正性影响.另一方面,即使在稀溶液中,随着高分子-稀土配合物浓度从4.0×10-6mol·L-1增大至4.0×10-4mol·L-1,配合物的荧光发射也会逐渐变弱,这是由激发态的配合物向硝基发生荧光共振能量转移(FRET)的淬灭作用所导致的,表现出硝基取代基对配合物发光性能的负性影响.  相似文献   

12.
以1,4-二氯甲氧基丁烷(BCMB)为氯甲基化试剂,使聚砜(PSF)氯甲基化(CM),形成氯甲基化聚砜(CMPSF),然后用6-羟基-2-萘甲酸(HNA)使CMPSF的氯甲基与HNA的酚羟基之间发生亲核取代反应,将萘甲酸(NA)配基键合在聚砜侧链,制得了功能化改性的聚砜NAPSF。采用红外光谱和核磁共振氢谱对其结构进行了表征。考察了主要因素对CMPSF与HNA之间亲核取代反应的影响规律,分析了反应机理,优化了反应条件。结果表明,CMPSF与HNA之间取代反应的速率与亲核试剂HNA的浓度无关,遵循SN1的反应机理;使用极性较强的溶剂二甲亚砜,有利于亲核取代反应的进行;在适宜条件下,CMPSF的氯甲基转化率可达96%,NA的键合量为1.68 mmol/g。将NAPSF与Eu(Ⅲ)离子配位,制得了聚合物-稀土配合物NAPSF-Eu(Ⅲ),它不仅发射出Eu3+离子的特征荧光,而且对Eu3+离子的荧光发射显示出很强的敏化作用。萘甲酸功能化的大分子配基NAPSF对Eu3+离子的敏化作用,远强于苯甲酸(BA)功能化的大分子配基BAPSF对Eu3+离子的敏化作用。  相似文献   

13.
将硝基苯甲酸配基(NBA)键合在聚苯乙烯侧链,制得了硝基苯甲酸功能化的聚苯乙烯(PS-NBA),在此基础上使大分子配体PS-NBA与Eu(III)离子配位,制备了二元高分子-稀土配合物PS-(NBA)3-Eu(III),也以邻菲罗啉(Phen)为小分子配体,制备了三元高分子-稀土配合物PS-(NBA)3-Eu(III)-Phen1,重点研究了芳环上硝基取代基对高分子-稀土配合物光致发光性能的影响.研究结果表明,芳环上的硝基取代基对以Eu(III)为中心离子的苯甲酸功能化聚苯乙烯-稀土配合物的发光性能具有双重影响.硝基取代基通过配基内的电荷转移(ILCT),耗损配基激发单线态的能量,有效降低苯甲酸配基的三线态能量,使配基NBA最低三线态能级与Eu(III)离子共振能级之间的匹配程度显著增强,对Eu(III)离子的荧光发射发生强敏化作用,使配合物PS-(NBA)3-Eu(III)以及PS-(NBA)3-Eu(III)-Phen1产生了高强度的荧光发射,显现出硝基取代基对配合物发光性能的正性影响.另一方面,即使在稀溶液中,随着高分子-稀土配合物浓度从4.0×10-6mol·L-1增大至4.0×10-4mol·L-1,配合物的荧光发射也会逐渐变弱,这是由激发态的配合物向硝基发生荧光共振能量转移(FRET)的淬灭作用所导致的,表现出硝基取代基对配合物发光性能的负性影响.  相似文献   

14.
以6-羟基-2-萘甲酸(HNA)为试剂,使氯甲基化聚苯乙烯(CMPS)的氯甲基与HNA的酚羟基之间发生亲核取代反应,将萘甲酸(NA)配基键合在聚苯乙烯侧链,制得了功能化改性的NAPS,采用红外光谱和核磁共振氢谱对其结构进行了表征,并使之与Eu(Ⅲ)配位,制得了高分子-稀土配合物NAPS-Eu(Ⅲ),初步探索了该配合物的荧光发射特性。本文重点研究了聚苯乙烯的功能化改性反应,考察了主要因素对CMPS与HNA之间亲核取代反应的影响规律,分析了反应机理,优化了反应条件。实验结果表明,CMPS与HNA之间取代反应的速率与亲核试剂HNA的浓度无关,该取代反应的机理是典型的SN1反应;使用极性较强的溶剂二甲亚砜以及采用较高的温度(70℃),有利于亲核取代反应的进行。NAPS-Eu(Ⅲ)不仅发射出Eu3+的特征荧光,而且大分子配基NAPS对Eu3+的荧光发射显示出很强的敏化作用。  相似文献   

15.
使3-硝基-4-羟基苯甲酸(NHBA)的羟基与氯甲基化聚苯乙烯(CMPS)的氯甲基进行亲核取代反应,在聚苯乙烯侧链上引入硝基苯甲酸(NBA),制得了功能化的聚苯乙烯PS-NBA,考察了亲核取代反应的优化反应条件。 并使之与Eu(Ⅲ)配位,制得了高分子-稀土配合物PS-(NBA)3-Eu(Ⅲ)。 采用红外光谱(FTIR)和核磁共振氢谱(1H NMR)对PS-NBA的结构进行了表征,测试了配合物的荧光发射特性。 结果表明,NHBA苯环上的硝基可降低CMPS与NHBA之间取代反应的速率,使用极性较强的溶剂N,N-二甲基甲酰胺及在较高的反应温度(70 ℃)下,有利于亲核取代反应的进行。 大分子链上的配基NBA对Eu3+离子的荧光发射显示出很强的敏化作用,其敏化作用远强于苯甲酸(BA)配基,高分子-稀土配合物PS-(NBA)3-Eu(Ⅲ)具有比PS-(BA)3-Eu(Ⅲ)更强的荧光发射。  相似文献   

16.
使3-硝基-4-羟基苯甲酸(NHBA)的羟基与氯甲基化聚苯乙烯(CMPS)的氯甲基进行亲核取代反应,在聚苯乙烯侧链上引入硝基苯甲酸(NBA),制得了功能化的聚苯乙烯PS-NBA,考察了亲核取代反应的优化反应条件。并使之与Eu(Ⅲ)配位,制得了高分子-稀土配合物PS-(NBA)3-Eu(Ⅲ)。采用红外光谱(FTIR)和核磁共振氢谱(1H NMR)对PS-NBA的结构进行了表征,测试了配合物的荧光发射特性。结果表明,NHBA苯环上的硝基可降低CMPS与NHBA之间取代反应的速率,使用极性较强的溶剂N,N-二甲基甲酰胺及在较高的反应温度(70℃)下,有利于亲核取代反应的进行。大分子链上的配基NBA对Eu3+离子的荧光发射显示出很强的敏化作用,其敏化作用远强于苯甲酸(BA)配基,高分子-稀土配合物PS-(NBA)3-Eu(Ⅲ)具有比PS-(BA)3-Eu(Ⅲ)更强的荧光发射。  相似文献   

17.
凭借氯甲基化的聚苯乙烯(CMPS)与水杨羟肟酸(SHA)之间的Friedel-Crafts烷基化反应,使SHA键合在聚苯乙烯(PS)的侧链上,制备了改性聚苯乙烯(SHA/PS)。再使SHA/PS与Tb(Ⅲ)离子配位,制得高分子-稀土配合物Tb(Ⅲ)-SHA/PS。采用红外光谱对其结构进行了表征,考察了影响SHA与CMPS之间Friedel-Crafts烷基化反应的主要因素。结果表明,当催化剂SnCl4用量为0.06 mL,35℃反应18h时,SHA/PS上SHA的键合率高达33.1%。Tb(Ⅲ)-SHA/PS配合物不仅具有与Tb(Ⅲ)离子相似的荧光光谱,而且SHA/PS配体对Tb(Ⅲ)离子产生了显著的Antenna效应,使其荧光强度大幅增强。  相似文献   

18.
以2-甲基苯甲酸(2-MBA)为第一配体、1,10-邻菲罗啉(phen)为第二配体,制备了三元铽配合物Tb(2-MBA)3phen和二元铽配合物Tb(2-MBA)3·2H2O,并利用元素分析、红外光谱、紫外光谱、荧光光谱和荧光寿命对二者的结构与性能进行分析表征。研究结果表明:三元铽配合物Tb(2-MBA)3phen的荧光发射强度要强于二元铽配合物Tb(2-MBA)3·2H2O,而二者的荧光寿命恰好相反,三元铽配合物Tb(2-MBA)3phen的荧光寿命短于二元铽配合物Tb(2-MBA)3·2H2O。热重分析表明Tb(2-MBA)3·2H2O的热分解温度要远高于Tb(2-MBA)3phen。  相似文献   

19.
稀土烟酸与8-羟基喹啉三元配合物的合成、表征及荧光光谱   总被引:11,自引:0,他引:11  
合成了 4种稀土烟酸 (HL)与 8 羟基喹啉 (Hhq)的三元固体配合物 ,对它们进行元素分析 ,确定其通式为REL2 ·hq·2H2 O (RE =La ,Eu ,Tb ,Dy) ,用摩尔电导、TG DTA分析、IR、UV和荧光光谱等研究了配合物的有关性质。结果表明 ,烟酸脱掉羧酸上的质子以酸根的形式与稀土离子呈双齿配位 ,而吡啶环上的氮原子未参加配位。hq- 的羟基氧和杂氮原子与RE3+ 离子配位。配体与稀土配位后 ,配合物中稠环数目增多 ,π键共轭程度增大。配合物中所含的水可能为配位水。荧光光谱研究发现 ,La和Dy的配合物的荧光表现为配体的荧光 ,Eu配合物中心离子的特征荧光峰表现不明显 ,而Tb配合物中配体能有效地将吸收的能量传递给Tb3+ ,敏化Tb3+ 的发光 ,发射较强荧光  相似文献   

20.
合成了3种4-酰基-双(1,3-二苯基-5-吡唑啉酮),1,5-双(1,3-二苯基-5-吡唑啉酮-4-基)-1,5-戊二酮;1,6-双(1,3-二苯基-5-吡唑啉酮-4-基)-1,6-己二酮和1,10-双(1,3-二苯基-5-吡唑啉酮-4-基)-1,10-癸二酮,通过元素分析、红外光谱和核磁共振氢谱对产物组成进行了表征.合成了它们的Tb(Ⅲ)二元和三元[1,10-二氮杂菲(Phen) 或2,2-联吡啶(Dipy)]配合物,测定了配合物的荧光光谱,对其荧光性质进行了研究.结果表明,配合物发射Tb(Ⅲ)的特征荧光,4-酰基-双(1,3-二苯基-5-吡唑啉酮)配体的三重态能级与Tb(Ⅲ)的最低激发态(5D4)能级匹配较好;配合物荧光强度随4-酰基-双(1,3-二苯基-5-吡唑啉酮)配体2个吡唑环间碳链的增长而减弱;第2配体Phen 和Dipy具有荧光增强作用,且前者优于后者.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号