首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
用共沉淀法制备了一系列不同Al2O3掺杂量(0.5%-3.0%, 摩尔分数)的SO2-4/SnO2催化剂. 采用N2吸附、热重(TG)分析、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、漫反射红外光谱(DRIFTS)、拉曼(Raman)光谱、魔角旋转固体核磁共振(27Al MAS NMR)对催化剂的结构和织构性质进行了表征, 用正丁胺电位滴定法测定了催化剂的酸量, 并评价了这些催化剂对月桂酸与甲醇的酯化和三乙酸甘油酯与甲醇的酯交换反应性能. 实验结果表明SO2-4/SnO2催化剂中掺杂少量Al2O3能明显提高催化活性, 这是由催化剂的酸性位增加而引起的, 添加Al2O3的摩尔分数为1.0%的催化剂表现出最高的反应活性, 在酯化反应中6 h后月桂酸转化率高达92.7%, 在酯交换反应中8 h后三乙酸甘油酯转化率高达91.1%.  相似文献   

2.
首次用硬脂法制备了Fe2O3-SiO2混合氧化物,经浸渍H2SO4后再焙烧得SO4^2-/Fe2O3-SiO2固体酸催化剂。用TEM,XRD,N2吸附/脱附和TG-DTA等手段对其进行了表征,结果显示制得的Fe2O3-SiO2混合氧化物具有多孔结构,且随着Si含量的增大,其比表面积明显增大,但孔径减小。用乙酸/丁醇酯化催化反应评估了该固体酸的催化性能。  相似文献   

3.
采用等体积浸渍法制备了不同负载量的固体酸催化剂SO42-/SnO2/SBA-15,利用X射线粉末衍射、N2吸附-脱附和透射电镜等手段对样品进行了表征,并考察了催化剂对4-叔丁基环己酮与乙二醇缩合反应的催化性能.结果表明,SO42-/SnO2催化剂负载于SBA-15后其催化性能明显改善.研究了SO42-/20%SnO2/SBA-15催化剂上部分酮类化合物与乙二醇及1,2-丙二醇的缩合反应,并考察了反应时间和催化剂用量等因素对反应性能的影响.在适宜的温和条件下,一些环酮类底物如环己酮、4-甲基环己酮和4-叔丁基环己酮等均可反应得到相应的缩醛化产物,且催化剂至少可循环使用4次.  相似文献   

4.
用α-Fe2O3纳米粒子作为前驱物,以SnC l4和NaOH作为反应试剂,通过简单的水热法制备了SnO2/α-Fe2O3纳米复合材料。SnO2/α-Fe2O3纳米复合材料具有有趣的形貌:直径约为20nm的SnO2纳米棒以α-Fe2O3纳米粒子为中心向四周辐射生长。利用X-ray粉末衍射(XRD),透射电镜(TEM)和扫描电镜(SEM)等测试手段对样品的成份、结构、形貌和尺寸进行了表征,初步探讨了SnO2/α-Fe2O3纳米复合材料的形成机理。  相似文献   

5.
固体超强酸SO2-4/SnO2-Al2O3的红外光谱研究   总被引:2,自引:0,他引:2  
以四氯化锡、硫酸铝为原料,氨水为沉淀剂,采用共沉淀法制得新型固体超强酸SO2-4/SnO2-Al2O3.采用FT-IR技术考察了金属元素摩尔比、焙烧温度、浸渍液以及掺杂稀土氧化物对该固体超强酸结构和性能的影响.FT-IR结果表明在该固体超强酸中,锡和硫酸根是以螯合和桥式两种方式配位结合,其中起催化活化作用的主要是和硫酸根以螯合双齿结合的锡;和SO2-4/ZrO2型超强酸相比,SO2-4/SnO2-Al2O3超强酸的硫酸根FT-IR特征吸收峰发生蓝移,显示出更强的酸性.锡铝摩尔比为9∶1、焙烧温度为773K、焙烧时间为3h时,制得的SO2-4/SnO2-Al2O3样品对酯化反应的催化性能最好.  相似文献   

6.
纳米固体超强酸SO2-4/Fe2O3催化合成尼泊金酸乙酯   总被引:3,自引:0,他引:3  
以纳米固体超强酸SO2-4/Fe2O3催化尼泊金酸与乙醇的酯化反应合成了尼泊金酸乙酯.较适宜的反应条件为:尼泊金酸25 mmol,n(尼泊金酸):n(乙醇)=1:4,ω(催化剂)=3.73%,甲苯15 mL,于84℃~86℃反应3 h,产率达到93.3%.  相似文献   

7.
采用铝阳极氧化法制备了Al2O3-Al-体型多孔氧化铝载体,再采用电沉积技术将TiO2沉积到氧化铝多孔的纳米孔道内,制备了催化精馏专用SO42-/TiO2-Al2O3-Al型固体酸催化剂,并以乙酸乙酯合成为模型反应,考察了水封条件,电沉积电压、电沉积时间等制备工艺条件对催化剂活性的影响.实验结果表明,适宜的制备条件为水封温度为50℃,水封时间为1 h,电沉积电压为6V,电沉积时间为30 min,在此制备条件下,醋酸转化率为31.34%.采用扫描电镜(SEM),X射线衍射分析(XRD)手段对所制备催化剂进行了表征.结果表明:阳极氧化铝膜的结构为无定型结构,TiO2在载体上呈高度分散状态.  相似文献   

8.
新型固体酸SO42-/Al2O3-Al 的制备与表征   总被引:3,自引:1,他引:3  
采用铝阳极氧化法制备了A12O3-Al一体型载体.并通过浸渍硫酸的方法制备了新型固体酸SO4^2-/Al2O3-Al催化剂.采用BET、XRD、XPS和NH3-TPD对其结构和酸性进行了表征.结果表明,该催化剂具有合适的孔结构.Al2O3-Al载体为无定形结构.NH3-TPD结果表明.该催化剂同时具有弱酸及强酸位.用乙酸/乙醇酯化催化反应评估了该固体酸的催化性能.  相似文献   

9.
研究了添加Al对SO42-/ZrO2超强酸样品的晶化、比表面、硫含量、超强酸性和正戊烷反应性能的影响,考察了活化温度、反应温度、Al含量和载Pt对催化剂活性和选择性的影响.SO42-/Al2O3ZrO2催化剂的酸强度与SO42-/ZrO2基本相当,但超强酸位比后者多,未载Pt时正戊烷反应活性和稳定性明显高于后者.负载Pt后,正戊烷异构化选择性和稳定性大大提高,但Pt/SO42-/Al2O3ZrO2催化剂的反应活性与Pt/SO42-/ZrO2相近,Al的促进作用不明显.  相似文献   

10.
纳米固体超强酸SO4^2-/Fe2O3催化合成尼泊金酸乙酯   总被引:2,自引:0,他引:2  
以纳米固体超强酸SO4^2-/Fe2O3,催化尼泊金酸与乙醇的酯化反应合成了尼泊金酸乙酯。较适宜的反应条件为:尼泊金酸25mmol,n(尼泊金酸):n(乙醇)=1:4,w(催化剂)=3.73%,甲苯15mL,于84℃~86℃反应3h,产率达到93.3%。  相似文献   

11.
将Fe2O3纳米粉体经一定浓度的H2SO4浸泡活化后制成纳米固体超强酸SO42-/Fe2O3,将其用于催化合成乙酸乙酯以考察其活性。利用均匀设计分析了超强酸制备过程及酯化反应过程中各因素的影响,研究结果表明较好的制备条件是:H2SO4浓度:2.5mol·L-1;浸泡时间:1h;活化温度:167℃;活化时间:1h,此时获得的固体超强酸SO42-/Fe2O3的粒径小于50nm。当催化剂用量为冰乙酸质量的5%,n(乙醇)∶n(冰乙酸)为3∶1,反应3.5h后乙酸的转化率高于80%。该催化剂经H2SO4溶液浸泡、活化再生后可重新使用,推断出其酸强度H0<-14.5。  相似文献   

12.
纳米复合固体超强酸SO42-/CoFe2O4的制备和表征   总被引:26,自引:0,他引:26  
采用纳米化学制备技术合成了新型的纳米复合固体超强酸催化剂SO4^2-/CoFe2O4。用XRD、TEM、XPS、红外光谱和比表面测定等技术研究了该催化剂的结构形态,结果表明:所研制的SO4^2-/CoFe2O42催化剂为晶态纳米粒子(〈50nm),比表面积很大(157m^2.g^-1),SO4^2-与氧化物的金属离子呈无机齿螯合状配位化合物的结合形式。以乙酸乙酯合成为模型反应考究了该催化剂的催化活  相似文献   

13.
宋华  董鹏飞  张旭 《物理化学学报》2010,26(8):2229-2234
通过向SO2-4 /ZrO2催化剂中同时引入适量的Pt和Al2O3, 制备出了具有较高催化性能和稳定性的Pt-SO2-4 /ZrO2-Al2O3型固体超强酸催化剂. 以正戊烷异构化反应为探针, 考察了Al含量对催化剂性能的影响; 并采用X射线衍射(XRD)、比表面积测定(BET)、红外(IR)光谱、程序升温还原(TPR)、热重-差热分析(TG-DTA)和氨-程序升温脱附(NH3-TPD)手段对催化剂进行了表征. 结果表明, Al能够提高ZrO2的晶化温度, 抑制硫的分解, 增加催化剂的比表面积, 增强硫氧键的结合, 提高催化剂的还原性能, 增加催化剂的酸强度和酸总量. 当Al2O3含量(质量分数, w)为5.0%时, Pt-SO2-4 /ZrO2-Al2O3固体超强酸催化剂的催化活性最好, 在100 h内异戊烷收率可稳定在52.0%以上, 选择性在98.2%以上.  相似文献   

14.
Solid superacid catalyst SO4(2-)-WO3-ZrO2 was characterized by means of XRD,DTA-TG, and surface area measurement techniques. The dependence of the surface area, SO42- content of the catalyst on calcination temperature was measured. It was found that there is a synergy to a certain degree between SO42- and WO3 with respect to the delay of ZrO2 crystallization, the stabilization of the tetragonal ZrO2 and the enlargement of the surface area of the catalyst. The addition of WO3 is beneficial to the stabilization of SO42- and remarkably increases the stability of SO42- at high temperature.  相似文献   

15.
La2O3对Ni/γ-Al2O3甲烷化催化剂的助催化作用   总被引:14,自引:0,他引:14  
我国将稀土作为助剂引入镍基甲烷化催化剂,大大提高了催化剂的活性和热稳定性,并已投入工业应用[1-3].稀土对不同镍催化剂反应性能及其作用机理的研究已有一些报导[3-7].谢有畅等观察到镍负载在经单层La2O3改性的γ-Al2O3表面,其晶粒要比没有La2O3时小得多.Rotgerink等认为添加La后反应速率的增加不只是由于几何效应,而是La对甲烷化本身有促进作用,单位镍表面的活性是随La含量不同而改变的,活性增加的同时表观活化能也增加[5].作为助剂的La2O3在氢还原和反应过程中的变化及其作用的研究和讨论较少,目前一般认为添…  相似文献   

16.
采用共沉淀法制备了系列铜负载量不同的Cu/Fe2O3水煤气变换(WGS)催化剂,并考察了铜负载量对催化剂结构和水煤气变换反应性能的影响. 结果表明,Cu/Fe2O3催化剂呈现出良好的水煤气反应性能,当CuO质量分数为20%时,催化剂的WGS性能最优,250 ℃时CO转化率高达97.2%,同时热稳定性也最好. 运用X射线粉末衍射(XRD)、N2物理吸脱附和H2程序升温还原(H2-TPR)等手段对Cu/Fe2O3催化剂的物相、织构特征及还原性能进行了表征,结果表明,CuFe2O4物种的存在极大地改善了催化剂的还原性能和WGS反应活性. 这是由于CuFe2O4特殊的尖晶石结构有利于Cu微晶的稳定;同时,CuFe2O4在低温下即被还原为单质铜,有利于促进催化剂体系中电子的转移. 此外,通过(NH4)2CO3溶液处理,研究了独立相CuO对Cu/Fe2O3催化剂WGS反应性能的影响,结果发现,独立相CuO的存在,有利于H原子在各组分传递,从而促进催化剂的CuFe2O4的还原,改善Cu/Fe2O3催化剂的WGS反应性能.  相似文献   

17.
以硫酸盐为原料,添加NaOH和NaHCO3以制备出碱式碳酸盐前驱体,合成出新型的纳米固体超强酸催化剂SO42-/ZnFe2O4,经XRD、BET、IR等检测,粒径为35nm,比表面积很大(137m2-1),粒度均匀。首次以该固体酸为催化剂,癸二酸和无水乙醇为原料合成癸二酸二乙酯,考察了影响反应的因素。结果表明,醇酸摩尔比为4.0∶1,催化剂用量为1.0g(癸二酸0.1mol),带水剂苯15mL,反应时间2.5h是最佳反应条件,酯化率可达91%,并推断出该催化剂的酸强度-16.02< Ho< -14.52.  相似文献   

18.
李丽  张旦萍  范以宁 《无机化学学报》2011,27(11):2201-2204
本工作用溶胶-凝胶法制备不同组成的SO42-/TiO2-ZrO2复合氧化物固体酸催化剂,用微型催化反应评价结合X-射线粉末衍射(XRD)、孔结构/BET表面积测试和NH3-程序升温脱附(NH3-TPD)等表征了SO42-/TiO2-ZrO2复合氧化物固体酸催化剂结构、表面酸性和长叶烯芳构化催化性能。复合氧化物固体酸SO42-/TiO2-ZrO2催化剂具有优良的长叶烯芳构化催化性能,并且其芳构化催化性能与催化剂组成和表面酸性密切相关。随催化剂中nZr/(nZr+nTi)增加,催化剂表面中等强度的酸中心量增加,芳构化产物选择性和收率明显增加,在nZr/(nZr+nTi)=0.5时达极大值。随nZr/(nZr+nTi)进一步增加,不仅催化剂表面酸中心量减少、原料转化率明显下降,而且催化剂酸强度增强,导致芳构化产物选择性和收率下降。催化长叶烯芳构化的二元复合氧化物固体酸SO42-/TiO2-ZrO2催化剂适宜的组成为nZr/(nZr+nTi)=0.5。  相似文献   

19.
Co3O4纳米立方体的可控合成及其CO氧化反应性能   总被引:1,自引:0,他引:1  
在乙醇和三乙胺的混合溶液中,采用溶剂热法制备了尺寸为10 nm的Co3O4立方体. 考察了钴盐前驱体和溶解氧对Co3O4纳米立方体结构的影响规律,通过对合成过程中不同阶段产物的结构分析和表征,提出了Co3O4纳米立方体的形成机制是溶解再结晶的过程. 将所制备的Co3O4纳米立方体在200 ℃焙烧处理后,尺寸和形貌均可保持稳定,但400 ℃焙烧后,变为球形纳米粒子. 这种主要暴露{100}晶面的Co3O4纳米立方体催化CO氧化反应的活性低于纳米粒子({111}晶面),验证了四氧化三钴纳米材料在CO氧化反应中的晶面效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号