首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
马逸群 《化学教育》2011,32(11):72-73
从热力学和实验验证的角度探讨“铁和氧化铁反应的产物是四氧化三铁,而不是氧化亚铁“。  相似文献   

2.
在我们学校有一大部分同学对四氧化三铁中铁的价数问题理解是模糊不清的,有的同学竟把四氧化三铁叫做氧化铁和氧化亚铁的混合物,甚至有些教科书和参考书也将四氧化三铁叫做氧化铁和氧化亚铁的混合物。如初中化学127页的注解(1952年版)也这样的写的。我觉得这个问题有进一步探讨和明确的必要。  相似文献   

3.
运用热力学原理基础知识,分析铁燃烧生成四氧化三铁,铁在常温下生锈生成氧化铁的反应属性,说明它们都是热力学自发进行的反应。对氧化铁、四氧化三铁与氧化亚铁相互转化的温度条件作简要说明。  相似文献   

4.
以二乙烯三胺(DETA)作为配位剂,快速合成了纳米粒子定向组装构成的类似花状的介晶钴.通过控制反应的速率和配位剂的种类,依次获得了精美的钴花、差形貌的枝晶、由纳米粒子和纳米片构成的微球.配位剂在介晶钴的形成过程中起了很重要的作用.探讨了介晶钴花的形成机理.介晶钴不但具有钴纳米晶的性能(在300 K时矫顽力260 Oe),而且拥有块体钴的性能(饱和磁化强度168 emu·g-1).合成方法简便、有效且具有较高的产率.  相似文献   

5.
本文分别采用模板法制备氧化铜纳米花, 水热法制备氧化铁纳米环, 并自组装制备了铝-氧化铜和铝-氧化铁2种铝热剂。自组装增大了异相材料之间的接触, 分别使得铝-氧化铜的反应放热量和压力由523 J·g-1、1 858 kPa增加至1 069 J·g-1、 4 389 kPa;铝-氧化铁的反应放热量和压力由1 448 J·g-1、749 kPa增加至2 039 J·g-1、2 280 kPa。两种铝热剂的放热量和压力差别较大, 且铝-氧化铜的静电感度高于大多数含能材料, 铝-氧化铁的撞击感度特别低, 显示出不同的应用特点。  相似文献   

6.
以1,4-苯二甲酸为配体,FeCl3为金属盐,采用溶剂热法合成了苯二甲酸-铁配位聚合物晶体.以其为前驱体,通过固相热解制备了尺寸均一的α-Fe2O3纳米粒子.利用XRD、FT-IR、SEM及TEM等手段对配位聚合物及其热解产物进行了表征.将α-Fe2O3纳米粒子用作锂离子电池负极材料,电化学测试结果表明:在0.1 A·g-1电流密度下充放电50次后,材料的可逆比容量仍保持在530 mAh·g-1,表现出较高的比容量和优异的循环稳定性.  相似文献   

7.
以1,4-苯二甲酸为配体,FeCl3为金属盐,采用溶剂热法合成了苯二甲酸-铁配位聚合物晶体。以其为前驱体,通过固相热解制备了尺寸均一的α-Fe2O3纳米粒子。利用XRD、FT-IR、SEM及TEM等手段对配位聚合物及其热解产物进行了表征。将α-Fe2O3纳米粒子用作锂离子电池负极材料,电化学测试结果表明:在0.1A·g-1电流密度下充放电50次后,材料的可逆比容量仍保持在530mAh·g-1,表现出较高的比容量和优异的循环稳定性。  相似文献   

8.
以Fe(CO)5和Ni(HCOO)2为前驱物,十八烯为溶剂,在表面活性剂和分散剂油酸和油胺的协同作用下,通过前驱体的液相热分解和自合金化,制备铁镍合金纳米颗粒。通过XRD和TEM研究了产物的微观结构,并对产物的磁学性质进行了表征。结果表明,在反应温度为200 ℃,油胺与油酸及甲酸镍的物质的量比为4∶2∶1,反应时间为20 min时可得形貌可控、抗氧化性强的面心立方晶体结构的平面三角形纳米铁镍合金,晶粒尺寸为15~55 nm。磁性测量表明,300 K时三角形形貌铁镍合金的饱和磁化强度为15.5 emu·g-1,矫顽力趋近于零,呈现超顺磁性;在低温(4.2 K)时,铁镍合金的饱和磁化强度为17.5 emu·g-1,矫顽力增大明显。  相似文献   

9.
研究了利用乙二醇共浸渍方法制备高分散的二氧化硅负载钴催化剂,该催化剂有效地提高了乳酸乙酯的气相加氢反应活性。系统地考察了钴金属负载量、乙二醇与硝酸钴摩尔比、醇种类和焙烧温度等制备参数对四氧化三钴纳米粒子物性的影响。乙二醇与硝酸钴摩尔比和醇种类对二氧化硅负载的四氧化三钴纳米粒子大小有显著影响。与常规的浸渍方法相比较,共浸渍过程中的乙二醇增强了二价钴粒子和载体二氧化硅之间的相互作用力,从而引起金属钴分散度的提高以及四氧化三钴纳米粒子粒径从16 nm降到5 nm以下;金属钴的高分散与无定型硅酸钴的形成密切相关;同时显著地提高了乳酸乙酯的加氢活性,在反应条件下(2.5MPa、160°C和10%(w,质量分数)Co/SiO_2)乳酸乙酯的转化率从69.5%提高到98.6%,1,2-丙二醇的选择性达到98.0%。利用X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N_2吸脱附实验、H_2程序升温还原(H_2-TPR)等表征手段对共浸渍制备的Co/SiO_2催化剂结构和形貌进行了表征分析。  相似文献   

10.
氧化铁磁性纳米粒子的表面配体交换及相转移   总被引:1,自引:1,他引:0  
以苯甲醇为单一溶剂, 通过常压、高温热解乙酰丙酮铁, 制备了尺寸单分散的四氧化三铁磁性纳米粒子. 采用透射电镜(TEM), X射线衍射(XRD), 动态光散射(DLS)等方法对粒子形貌和结构进行了表征. 利用傅里叶变换红外(FT-IR)光谱和热重分析(TGA)研究了所制备纳米粒子的表面化学, 结果表明稳定四氧化三铁粒子的是苯甲酸分子, 且表面覆盖度小于20%. 所制备的磁性纳米粒子可以在室温下方便地进行表面配体交换, 从而为氧化铁磁性纳米粒子的功能化提供新的途径.  相似文献   

11.
An easy method in a solvothermal system has been developed to synthesize nanostructured magnetite (Fe3O4)-loaded functionalized carbon spheres (CSs) and cobalt ferrite (CoFe2O4). Surface-tunable CSs loaded with iron oxide (Fe3O4) nanoparticles were prepared using an acetylferrocene Schiff base (OPF), whereas spinel cobalt ferrite (CoFe2O4) was synthesized via metal complexes of a ferrocenyl Schiff base with phenol moiety (Co-OPF). The formed composite powder was investigated using X-ray powder diffraction, Raman spectrometry, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and vibrating sample magnetometry. It was found that most of the iron oxide nanoparticles were evenly distributed upon the surface of the CSs. Furthermore, the surface of the iron oxide-loaded CSs has large numbers of functional groups. Good saturation magnetization was achieved for the formed magnetic nanoparticles.  相似文献   

12.
A novel flowerbud-like magnetite/graphene oxide (GO) hybrid was synthesized from facile two-step hydrothermal process by using FeCl3 as iron source, ethylene glycol as the reducing agent, and graphene oxide as template. The magnetite nanoparticles with the diameters of 70–80 nm were attached onto the surface of graphene oxide through the two-step self-assembly process which enhanced the magnetic properties of the hybrids. The final flowerbud-like magnetite/graphene oxide hybrid emerged with the saturated magnetization of ~84.5 emu g–1. More importantly, owing to the combined contribution of enhanced dielectric and magnetic properties, the maximum microwave absorption of as-prepared magnetite/GO hybrid reached 30 dB with a thickness of 4 mm. Besides, the absorption bandwidth with a reflection loss above 23 dB ranged from 6.0 to 11.5 GHz.  相似文献   

13.
This work describes the preparation and characterization of polypyrrole (PPy)/iron oxide nanocomposites fabricated from monodispersed iron oxide nanoparticles in the crystalline form of magnetite (Fe3O4) and PPy by in situ chemical oxidative polymerization. Two spherical nanoparticles of magnetite, such as 4 and 8 nm, served as cores were first dispersed in an aqueous solution with anionic surfactant sodium bis(2‐ethylhexyl) sulfosuccinate to form micelle/magnetite spherical templates that avoid the aggregation of magnetite nanoparticles during the further preparation of nanocomposites. The PPy/magnetite nanocomposites were then synthesized on the surface of the spherical templates. Structural and morphological analysis showed that the fabricated PPy/magnetite nanocomposites are core (magnetite)‐shell (PPy) structures. Morphology of the PPy/magnetite nanocomposites containing monodispersed 4‐nm magnetite nanoparticles shows a remarkable change from spherical to tube‐like structures as the content of nanoparticles increases from 12 to 24 wt %. Conductivities of these PPy/magnetite nanocomposites show significant enhancements when compared with those of PPy without magnetite nanoparticles, in particular the conductivities of 36 wt % PPy/magnetite nanocomposites with 4‐nm magnetite nanoparticles are about six times in magnitude higher than those of PPy without magnetite nanocomposites. These results suggest that the tube‐like structures of 36 wt % PPy/magnetite nanocomposites may be served as conducting network to enhance the conductivity of nanocomposites. The magnetic properties of 24 and 36 wt % PPy/magnetitenanocomposites show ferromagnetic behavior and supermagnetism, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1291–1300, 2008  相似文献   

14.

Co-doped ZnAl2O4 nanoparticles were prepared by hydrothermal method. The samples were characterized by XRD, HRTEM, EDX, FT-IR, XPS, PL, and UV–Vis, and the effects of cobalt doping on the microstructure and optical property of the samples were studied. The experimental results showed that Co-doped ZnAl2O4 nanoparticles synthesized by this method are single phase with cubic crystal structure, no other impurity phases were observed. Furthermore, with increasing the Co2+ concentration, the average crystallite size of the Co-doped samples became smaller. The absorption bands in FT-IR spectra are broadened in the low frequency region, the PL spectra had the red-shift and the UV–Vis peaks intensity gradually enhanced.

  相似文献   

15.
ZnS and Co-doped ZnS nanoparticles have been prepared by simple chemical precipitation method. Zinc acetate, sodium sulfide, and cobalt nitrate have been used as precursors for the preparation of Co-doped ZnS quantum dots. The X-ray diffraction results revealed that the undoped and Co-doped ZnS quantum dots exhibit hexagonal structure. The average grain size of quantum dot was found to lie in the range of 2.6–3.8 nm. The surface morphology has been studied using scanning electron microscope. The compositional analysis results confirm the presence of Co, Zn and S in the sample. The optical properties of undoped and Co-doped ZnS quantum dots have been studied using absorption spectra. TEM results show that undoped and Co-doped ZnS nanoparticles exhibit a uniform size distribution with average size of 2.5–3.4 nm.  相似文献   

16.
Magnetic iron oxide nanoparticles synthesized by coprecipitation and thermal decomposition yield largely monodisperse size distributions. The diameters of the coprecipitated particles measured by X‐ray diffraction and transmission electron microscopy are between approximately 9 and 15 nm, whereas the diameters of thermally decomposed particles are in the range of 8 to 10 nm. Coprecipitated particles are indexed as magnetite‐rich and thermally decomposed particles as maghemite‐rich; however, both methods produce a mixture of magnetite and maghemite. Fourier transform IR spectra reveal that the nanoparticles are coated with at least two layers of oleic acid (OA) surfactant. The inner layer is postulated to be chemically adsorbed on the nanoparticle surface whereas the rest of the OA is physically adsorbed, as indicated by carboxyl O? H stretching modes above 3400 cm?1. Differential thermal analysis (DTA) results indicate a double‐stepped weight loss process, the lower‐temperature step of which is assigned to condensation due to physically adsorbed or low‐energy bonded OA moieties. Density functional calculations of Fe–O clusters, the inverse spinel cell, and isolated OA, as well as OA in bidentate linkage with ferrous and ferric atoms, suggest that the higher‐temperature DTA stage could be further broken down into two regions: one in which condensation is due ferrous/ferrous– and/or ferrous/ferric–OA and the other due to condensation from ferrous/ferric– and ferric/ferric–OA complexes. The latter appear to form bonds with the OA carbonyl group of energy up to fivefold that of the bond formed by the ferrous/ferrous pairs. Molecular orbital populations indicate that such increased stability of the ferric/ferric pair is due to the contribution of the low‐lying Fe3+ t2g states into four bonding orbitals between ?0.623 and ?0.410 a.u.  相似文献   

17.
In a series of experiments, we coated iron oxide nanoparticles, which were originally stabilized with lauric acid, with a polymer layer of Octadecyltrichlorosilane (OTS). Characterization of the different coated nanoparticles was accomplished by Static and Dynamic Light Scattering, acoustic spectroscopy, and Atomic Force Microscopy. In various experiments, we systematically investigated the effect of different parameters such as the OTS concentration and iron oxide content on the particle size of the coated nanoparticles. It was recognized that the size of the coated nanoparticles mainly depend on the concentration of OTS (C OTS) measured with respect to the concentration of the iron oxide particles (C mag.). Below a well-defined threshold value of C OTS /C mag, we did not observe any adsorption of OTS on the surface of iron oxide nanoparticles. The particle size of OTS-coated iron oxide nanoparticles increased rapidly at concentration ratios above the threshold concentration and reached a typical plateau value for long periods of time.  相似文献   

18.
十六烷基羧甲砜基氢氧化铁和丁基羧甲砜基氢氧化铁通过热脱羧方法,合成了纳米氧化铁颗粒。采用X射线衍射、红外光谱及透射电镜等手段对纳米氧化铁的合成过程和结构特征进行了表征。制备的纳米氧化铁具有8~18 nm的晶粒尺寸。羧甲砜基的热脱羧过程使得表面活性剂从纳米颗粒表面去除相对容易,特别是丁基羧甲砜基化合物。十六烷基羧甲砜基氢氧化铁制备纳米氧化铁颗粒存在脱羧有机分子还原Fe3+过程,而丁基羧甲砜基氢氧化铁通过热脱羧分解的方式合成纳米氧化铁颗粒。  相似文献   

19.
以三价铁盐为铁源,采用多元醇还原法在低温下制备出了具有不同长径比的棒状LiFePO4材料. 通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、循环伏安(CV)、交流阻抗谱(EIS)和恒电流充放电测试等手段分析了不同回流反应时间下制备出的前驱体和最终的LiFePO4/C 样品. 结果表明:回流反应时间对LiFePO4的形貌和特性有明显的影响. 通过把回流反应时间从4 h延长至16 h,材料的形貌由不规则的短棒状颗粒变为规则的长棒状颗粒,且棒的直径明显变小. 当回流反应时间为10 h 时,样品复合了多种形貌,有利于电子的传输,在低倍率下具有优秀的性能,0.1C放电比容量为163 mAh·g-1;当回流反应时间为16 h 时,样品具有最大的长径比,有利于锂离子的扩散,在高倍率下具有良好的性能,1C、3C、5C、10C、20C倍率下放电比容量分别为135、125、118、110、98 mAh·g-1,循环性能良好,几乎无衰减.  相似文献   

20.
Nanosized iron(III) oxide has been obtained by thermolysis of iron(III) acetylacetonate using diphenyl ether as a dispersion medium. It has been shown that increase in thermolysis temperature from 180 to 250°C allows one to half the average size of Fe2O3 nanoparticles. The introduction of surfactant into dispersion medium also leads to decrease of the average size of particles down to 4 nm. The phase composition of the prepared nano-Fe2O3 has been established, the possibility to reduce nano-Fe2O3 into iron metal has been shown by temperature-programmed reduction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号