首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
将碳气凝胶(CAs)在金属钠熔体中于800°C加热3h,制得结构重整的碳气凝胶(RCAs),并研究了它们的电化学行为.采用X射线粉末衍射(XRD)、激光散射拉曼(Raman)光谱、气体的吸附与脱附(BET法)、透射电子显微镜(TEM)以及电化学阻抗谱(EIS)等手段,对CAs和RCAs样品分别进行了表征.结果表明:无定形态的碳单质微粒在金属钠作用下发生结构重排;所得RCAs的比表面积比CAs的大约增加48%;RCAs中孔径在2和4nm尺寸处,呈现比较集中的分布,孔径小于10nm以下的孔体积占其总孔容的30%,是CAs的3倍.CAs和RCAs样品的电化学测试结果表明:RCAs内部接触电阻约为CAs的45%,并保持了明显的电容特性.  相似文献   

2.
超级电容器炭电极材料孔结构对其性能的影响   总被引:23,自引:2,他引:23  
采用无瓶颈的系列酚醛树脂活性炭为电极材料,用氮吸附和恒流充、放电,以及交流阻抗法,研究孔径和孔表面积等孔结构对其性能的影响.结果表明,活性炭电极材料双电层电容与微孔(孔宽度< 2.0 nm)表面和外孔(孔宽度 >2.0 nm)表面都有关系,但主要取决于微孔表面双电层电容.微孔表面比电容为21.4 μF•cm-2,外孔表面比电容< 10 μF•cm-2.外孔表面比电容较低可能是由于空间电荷层的影响.微孔孔径较大的炭材料具有高比电容和良好的高倍率放电的特性.  相似文献   

3.
通过化学氧化聚合法制备出不同比例的聚吡咯(PPY)/硝酸活化碳气凝胶(HCA)复合材料。采用傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)表征材料的成分和形貌,结果表明,通过硝酸活化及与聚吡咯的复合,并未破坏碳气凝胶的多孔形貌,硝酸活化碳气凝胶及聚吡咯/硝酸活化碳气凝胶都仍然保持着原碳气凝胶的三维纳米多孔结构。采用对照实验的方法,设计并合成五组不同配比的复合材料,聚吡咯与硝酸活化碳气凝胶的质量比例分别为3:1、2:1、1:1、1:2、1:3,通过循环伏安法,恒流充放电,交流阻抗及循环性测试等考察材料的电化学性能。结果证明,当聚吡咯与硝酸活化碳气凝胶比例为1:1时,复合材料显示出最优电化学性能:比电容高达336 F·g-1,是纯碳气凝胶(103 F·g-1)的三倍有余,除此还显示出卓越的导电性与循环稳定性, 2000次循环后仍保持初始电容的91%,具备优良的超级电容器电极材料性能。因此聚吡咯/硝酸活化碳气凝胶复合纳米材料是超级电容器的理想电极材料。  相似文献   

4.
刘宁 《无机化学学报》2013,29(3):551-556
对炭气凝胶微球在高温下进行氯化锌活化改性,并用于制作超级电容器的电极。采用扫描电镜、N2物理吸附-脱附等对炭气凝胶微球的形貌结构进行表征,采用循环伏安、恒流充放电等测定了材料的电化学性能。结果表明,氯化锌活化有效地改善了炭气凝胶微球的孔结构,通过增加炭气凝胶微球的微孔面积和体积,提高了材料的比表面积和孔隙率。经过氯化锌活化,炭气凝胶微球的电化学性能也随之得到提高,电阻明显减小,比电容提高了2倍以上。  相似文献   

5.
超级电容器作为一种新型的能源存储装置,由于其较高的功率密度、优良的充放电特性、超长的循环寿命,使其在移动电源,新能源汽车等众多领域具有非常广泛的应用前景.3D石墨烯基气凝胶具有多孔结构、大的比表面积、高的导电率、优异的机械性能和电子传输能力,它一直被认为是超级电容器的理想电极材料.本文综述了3D石墨烯基气凝胶的制备方法...  相似文献   

6.
采用原位聚合法合成聚苯胺(PAIN)及聚苯胺/炭气凝胶(PAIN/CA)复合材料,经过高温裂解制备含氮碳(NC)及含氮碳/炭气凝胶复合材料(NC/CA),再以KOH为活化剂对其进行活化,制备活化含氮碳(ANC)及活化含氮碳/炭气凝胶复合材料(ANC/CA)。采用扫描电镜、循环伏安、恒流充放电以及电化学阻抗等方法进行性能测试,结果表明,由于KOH的活化作用,含氮碳材料的粒径明显变小,其比电容值为138 F/g,高于未活化含氮碳材料(98 F/g),ANC/AC3复合材料电极的比电容值比ACA电极(88 F/g)高,达到127 F/g。  相似文献   

7.
杨乐意  刘乔  陈重一 《化学通报》2022,85(12):1410-1418
超级电容器是一种具有高功率密度、宽工作温度范围和出色循环稳定性等优点的新型储能设备。聚合物水凝胶因优异的离子电导率和力学性能,被广泛应用于新一代高性能超级电容器领域。其作为准固态电解质材料,能够克服电解液泄漏对电路造成的损害,同时促进器件的轻量化和集成化。本文以聚合物水凝胶的化学结构为切入点,综述了水凝胶电解质的结构对其力学性能及电化学性能的影响,并展望了其在超级电容器中的发展趋势。  相似文献   

8.
以氧化硅介孔分子筛SBA-15为模板制备出介孔MnO2和介孔炭, 并分别作为正极和负极在6 mol·L-1 KOH电解液中组装出新型非对称超级电容器. 小角X射线衍射(LXRD)、透射电镜(TEM)以及N2吸附-脱附测试表明样品具有介孔结构, 且比表面积较大, 孔径分布范围较窄. 采用恒流充放电、循环伏安、交流阻抗等电化学方法考察了非对称超级电容器的性能. 在0.1 A·g-1电流密度、不同充放电电位下进行研究, 得出最佳充放电电位为1.8 V. 结果表明, 在0.1 A·g-1电流密度、1.8 V的充放电电位下电容器的充放电性能良好, 等效串联电阻(ESR)为1.15 Ω, 功率密度为89.0 W·kg-1, 能量密度达31.3 Wh·kg-1, 首次放电比容量为76.7 F·g-1, 经过1000次循环容量仍保持在69.5 F·g-1.  相似文献   

9.
以450℃低温炭化的各向异性中间相沥青基炭纤维为原料,先通过KOH化学活化方法制备出活性炭纤维(ACFs),再对ACFs进行炭化改性,以提高ACFs的导电率,系统地研究了炭化温度对ACFs微观形貌、结晶度、孔结构和超级电容器性能的影响。结果显示:经过1 200℃炭化处理的ACFs(ACFs~(-1)200)电极具有优异的电化学性能,在0.1 A·g~(-1)电流密度下比容量高达204 F·g~(-1),1 000次循环后电容保持率达到97.0%;且电流增至20 A·g~(-1)时依然具有高比容量(149 F·g~(-1)),表明ACFs~(-1)200电极相比于未炭化的ACFs,其导电率、大电流密度下的比容量、循环保持率均显著提高。  相似文献   

10.
吴中  张新波 《电化学》2015,21(6):554
以氧化石墨、间苯二酚、甲醛和泡沫镍为原料,经85 oC水热碳化处理,在泡沫镍表面原位聚合形成了碳凝胶/泡沫镍一体化电极,冷冻干燥处理后可得多孔碳凝胶/泡沫镍一体化电极. 水系和有机系的超级电容器测试表明,多孔碳凝胶/泡沫镍一体化电极具有较高的比容量和良好的循环稳定性,其独特的一体化电极组成和多孔结构有利于电子和电解液离子的有效传输.  相似文献   

11.
酚醛基活性炭纤维孔结构及其电化学性能研究   总被引:8,自引:0,他引:8  
利用水蒸汽活化法制备了酚醛基活性炭纤维(ACF-H2O), 对其比表面积、孔结构与在LiClO4/PC(聚碳酸丙烯酯)有机电解液中的电容性能之间的关系进行了探讨. 用N2(77 K)吸附法测定活性炭纤维的孔结构和比表面积, 用恒流充放电法和交流阻抗技术测量双电层电容器(EDLC)的电容量及内部阻抗. 研究表明, 在LiClO4/PC有机电解液中, ACF-H2O电极的可用孔径(d)应在0.7 nm以上. 随着活化时间的延长, ACF-H2O的孔容和比表面不断增大, 但微孔(0.7 nm < d < 2.0 nm)和中孔(d > 2.0 nm)率变化很小, 活化过程中孔的延伸和拓宽同步进行, 但过度活化则造成孔壁塌陷, 孔容和比表面迅速下降. 因此, 除活化过度的样品外, 电容量随比表面积呈线性增长, 最高达到109. 6 F•g-1. 但中孔和微孔的孔表面对电容的贡献不同, 其单位面积电容分别为8.44 μF•cm-2和4.29 μF•cm-2, 中孔具有更高的表面利用率. ACF-H2O电极的电容量、阻抗特性和孔结构密切相关. 随着孔径的增大, 时间常数减小, 电解液离子更易于向孔内快速迁移, 阻抗降低, 电极具有更好的充放电倍率特性. 因此, 提高孔径和比表面积, 减少超微孔(d < 0.7 nm), 是提高 EDLC能量密度和功率密度的重要途径. 然而仅采用水蒸汽活化, 只能在小中孔以下的孔径范围内进行调孔, ACF-H2O电极电容性能的提高受限.  相似文献   

12.
用于超级电容器电极材料的聚苯胺基碳(英文)   总被引:1,自引:0,他引:1  
在不同温度下碳化硫酸掺杂的聚苯胺制备了含杂原子(氮和氧原子)的新型碳材料.分别通过扫描电镜、元素分析仪、X射线光电子能谱仪和比表面积测试仪对这些碳材料的形貌特征、元素组成、表面化学组成和比表面积进行了表征.用循环伏安法、恒电流充放电法和交流阻抗法对其进行了电化学性能的研究.研究结果表明,在温度为800℃下碳化聚苯胺得到的碳有很好的电化学性能,尽管它的比表面积很小(325m·2g-1),但在0.5A·g-1电流密度下其比电容高达153F·g-1.它的高比电容可能与其含有合适比例的杂原子(氮和氧原子)有关,因为合适比例的氮和氧杂原子能够产生最大的赝电容.这些结果表明这种碳材料是一种很有发展前景的超级电容器电极材料.  相似文献   

13.
The Pore Structure Determination of Carbon Aerogels   总被引:2,自引:0,他引:2  
The detailed adsorption isotherms of nitrogen on carbon aerogels at 77 K were measured. The N2 adsorption isotherm had a marked hysteresis. The adsorption isotherms were analyzed by high resolution s-plots to evaluate their porosity. The s-plots showed an explicit upward deviation from the linearity below s = 0.5, suggesting the presence of micropores. The mesoporosity and microporosity were separately determined from the s-plot. The predominant pores in carbon aerogels were mesopores and the percentage of micropores was in the range of 5 to 10% of the total pore volume. The N2 adsorption hysteresis was analyzed with the Saam-Cole theory under the assumption of the cylindrical pore shape. The parameters determined from the Saam-Cole method were associated with the carbon aerogel structure.  相似文献   

14.
利用天然生物质杨絮特殊的管状结构通过简单的高温碳化法制备出碳微米管(CMTs). 将所得到的碳微米管作为基底, 采用化学气相沉积法制备出三维结构的碳微米管/碳纳米管(CNTs)复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)光谱仪、拉曼光谱仪对其进行了详细分析. 通过两电极测试体系对其超级电容性能进行测试, 碳微米管/碳纳米管复合电极在1 mol·L-1Li2SO4电解液中的比电容值可达77 F·g-1, 远大于碳微米管的比电容值(23 F·g-1).  相似文献   

15.
采用一步法静电纺丝技术制备了具有超亲水特性的氧化锰/碳纳米纤维(MnO_x/CNFs)复合柔性膜电极材料,并通过X射线衍射、扫描电子显微镜和透射电子显微镜等对复合材料进行了表征.电化学性能测试结果表明,复合材料的电容性能优于单一材料,醋酸锰质量分数为40%时制得的复合纳米纤维电极(MC-4)在1 A/g电流密度下,于2 mol/L KOH电解液中的比电容高达1112.5 F/g,10 A/g电流密度下循环3000次比容量保持在93.4%,具有很好的稳定性.MnO_x/CNFs复合材料电化学性能增强一方面是由于三维超亲水纤维膜结构有利于电解液的快速浸润渗透,从而极大缩短了传输到材料基质的有效路径;另一方面是由于碳和MnO_x的协同效应,包裹在MnO_x粒子周围的碳层避免了MnO_x在充放电过程中的体积膨胀效应,这2种叠加机制促进了电化学性能的提升.  相似文献   

16.
利用苯胺原位化学聚合合成聚苯胺包覆碳纳米管(CNTs), 再炭化处理制备氮掺杂碳纳米管(NCNTs).激光拉曼(Raman)光谱和X射线光电子谱(XPS)分析及透射电镜(TEM)观察表明, 苯胺包覆碳纳米管经炭化处理后, 得到以碳纳米管为核、氮掺杂碳层为壳, 具有核-壳结构的氮掺杂碳纳米管, 而碳纳米管本征结构未遭破坏. 研究表明, 随着苯胺用量的增大, 氮掺杂碳纳米管的氮掺杂碳层变厚, 氮含量从7.06%(质量分数)增加到8.64%, 而作为超级电容器电极材料, 随着氮掺杂碳层厚度降低, 氮掺杂碳纳米管在6 mol·L-1氢氧化钾电解液中的比容量从107 F·g-1增大到205 F·g-1, 远高于原始碳纳米管10 F·g-1的比容量, 且聚苯胺改性氮掺杂碳纳米管表现出较好的充放电循环性, 经1000次充放电循环后仍保持初始容量的92.8%~97.1%, 表明氮掺杂碳纳米管不仅通过表面氮杂原子引入大的法拉第电容和改善亲水性使电容量显著增大, 其具有的核壳结构特征也使循环稳定性增强。  相似文献   

17.
以三氯乙烷和二氯乙烷为原料, 金属钠为还原剂, 在溶剂热条件(100~150 ℃)下使氯代乙烷中的碳氯键和碳氢键发生断裂制备了碳纳米球, 并对制备的碳纳米球进行了表征. X射线衍射结果表明, 样品为类石墨结构, 衍射信号宽且弱, 表明样品的结晶性较差; 拉曼光谱分析结果也表明样品具有较高的无序度. 样品的SEM与TEM分析结果表明, 在较高的反应温度下, 碳球具有更好的单分散性, 碳球的粒径随温度的升高而增大; 选区电子衍射结果表明碳球内部为无定形的类石墨结构. 以碳纳米球为负极材料的锂离子电池测试结果表明, 50周循环后比容量为941 mA·h/g, 库仑效率接近100%, 放电容量保持率为103.7%, 具有良好的循环稳定性. 测试了不同温度下制备样品的超级电容器性能, 发现120 ℃下制备的碳纳米球具有较高的比电容和较低的内阻值, 比电容高达130 F/g, 经过1000周循环充放电后比电容衰减比例低于14%, 具有较高的稳定性.  相似文献   

18.
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g−1, signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g−1, highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.  相似文献   

19.
The massive discharge of biomass wastes not only causes waste of resources, but also pollutes the environment. Therefore, converting biomass wastes into carbon materials is an effective way to solve the above problems. Here, using biomass waste pig nails as raw materials and K2CO3 as chemical activators, the N-doped porous carbon(KPNC) is prepared by direct pyrolysis. As an electrode for supercapacitors, the electrochemical tests of KPNCs showed that they exhibited good electrochemical performance and excellent cycling stability. When the current density is 0.2 A/g, the specific capacitance is up to 344.6 F/g. Moreover, it still maintains 97.6% initial capacitance retention after 2000 cycles at a high current density of 5 A/g. Above exceptional electrochemical performances may be ascribed to an appropriate porous structure(Smicro/Stotal=80.31%, Vmicro/Vtotal=76.19%), high nitrogen contents(4.44%, atomic fraction), oxygen contents(9.13%, atomic fraction) as well as small internal resistance. The above experimental results show that the conversion of pig nails to porous carbon can reduce the waste of resources and alleviate environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号