共查询到16条相似文献,搜索用时 78 毫秒
1.
2.
氧化锌(ZnO)是一种重要的化工原料, 超临界水热合成法制备纳米ZnO的第一步是锌盐与碱或水发生水解反应生成Zn(OH)2, 后者接着脱水生成ZnO. 以Zn(CH3COO)2为原料, 直接和超临界水(SCW)反应能够制备纳米级的ZnO颗粒, 但对反应机理的探讨较少. 本研究利用分子动力学模拟超临界条件下Zn(CH3COO)2水解反应过程中的结构和能量变化, 发现Zn(CH3COO)2在SCW中容易聚集成无定形的团簇, 1个Zn2+平均和5个CH3COO-和1个H2O配位, 形成6配位的八面体结构. 处于Zn(CH3COO)2团簇和SCW界面的Zn2+能够和更多的H2O配位. 水解反应后系统的势能降低, 同时伴随Zn(CH3COO)2团簇结构的改变. 反应产物OH-分布在Zn(CH3COO)2团簇内部, 富集Zn2+, 而CH3COOH则分布在SCW中. 本文的工作为超临界水热合成的反应过程提供了基本的理论依据. 相似文献
3.
我们利用Born-Mayer-Huggins相互作用势函数对(KF)N(N=108,256,500和864)团簇进行了分子动力学(MD)模拟。为了避免周期性边界条件对相变、成核和重结晶的干扰作用,对体系采用了自由边界。基于MD模拟结果,对团簇的熔化温度、熔化焓、扩散系数、成核速率、固液界面自由能、临界核大小等进行了计算和讨论。在对(KF)864双晶团簇的热退火模拟中,观察到了固态的重结晶和晶粒的生长。经典的成核理论成功地解释了(KF)864双晶团簇的重结晶MD模拟结果。 相似文献
4.
5.
采用分子动力学方法计算了超临界Lennard-Jones(L-J)流体混合物的扩散性质, 分析了超临界条件下二元L-J混合流体(Ar-Kr体系)中各组分的自扩散系数及Maxwell-Stefan互扩散系数随组分的变化情况. 结果表明, 与Darken公式能很好地应用于常规条件下的Ar-Kr体系不同, 超临界条件下的Maxwell-Stefan扩散系数明显大于Darken公式的预测值, 不同原子间的速度互相关函数不可忽略且为正相关. 相似文献
6.
中介尺度Au纳米团簇熔化的分子动力学模拟 总被引:2,自引:0,他引:2
采用分子动力学模拟技术,研究了原子个数为16~8628的 Au纳米团簇的熔化过程.采用 Johnson的EAM (embedded atom method) 模型,模拟结果表明,金属纳米团簇存在一中介尺度区域.对Au纳米团簇而言,当原子个数N >456时,团簇的热力学性质与团簇尺寸呈线性关系,熔化首先从表面开始,逐步向中心区域推进,且满足Tmb-Tmc(N)=aN(-1/3)的关系.另外,计算了中介区域的团簇的尺寸、熔化温度、表面能、熵、焓等热力学量以及均方根位移(RMSD)等动力学量,为研究纳米团簇提供定量数据. 相似文献
7.
超临界NaCl水溶液的分子动力学模拟 总被引:7,自引:0,他引:7
采用分子动力学模拟的方法对超临界NaCl水溶液的微观结构进行了研究.模拟发现在所研究超临界条件下,密度的变化比温度的变化对超临界NaCl水溶液的微观结构影响更大.温度及密度对Cl- H2O径向分布函数的影响比对Na+ H2O径向分布函数的影响要大.超临界条件下,各gNa+-Cl-在0.261 nm处出现峰值,表明Na+、Cl-之间发生了离子的缔合.超临界条件下,随温度增加,缔合作用增强;随密度增加,缔合作用减弱.本文工作为建立可适用于超临界条件下的电解质热力学模型提供了依据. 相似文献
8.
用遗传算法结合经验势搜索了 (AgI)n(n=3-15) 团簇的可能稳定结构,并用微正则分子动力学方法研究了它们的熔化行为.(AgI)n 团簇的稳定结构主要以四叫元环和六元环相接的笼状结构为主.大多数(AgI)n会在一个较大的温度范围内随温度升高结构不断扭曲,原子间距涨落及动能涨落不断增大,直到在某个温度下熔化,结构变得完全无序.(AgI)6 的结构具有很高的对称性,熔化发生在一个较窄的温度范围.对于(AgI)5,会在熔化前较大的温度范围内发生最稳定结构与能量较高的环状异构体之间的转化,并可能出现负热容现象. 相似文献
9.
用遗传算法结合经验势搜索了(AgI)n(n=3-15)团簇的可能稳定结构, 并用微正则分子动力学方法研究了它们的熔化行为. (AgI)n团簇的稳定结构主要以四元环和六元环相接的笼状结构为主. 大多数(AgI)n会在一个较大的温度范围内随温度升高结构不断扭曲, 原子间距涨落及动能涨落不断增大, 直到在某个温度下熔化, 结构变得完全无序. (AgI)6的结构具有很高的对称性, 熔化发生在一个较窄的温度范围. 对于(AgI)5, 会在熔化前较大的温度范围内发生最稳定结构与能量较高的环状异构体之间的转化, 并可能出现负热容现象. 相似文献
10.
分子动力学方法在化学及相关学科研究中的重要地位日趋凸显,但在本科化学实验中鲜有涉及,现有计算化学实验多侧重量子化学方法对分子性质的计算。为普及分子动力学模拟这一有力工具,同时帮助学生理解分子的动态行为,本文以丙氨酸二肽模型分子为例设计了一个简单的分子动力学模拟实验。通过本实验学生能初步掌握分子动力学模拟的基本原理、流程和分析方法,同时加深对物理化学中势能面等抽象概念的理解。本实验即可作为单独设课的计算化学实验的内容,亦可在物理化学实验中作为拓展实验开设。 相似文献
11.
采用分子动力学模拟(MD)方法对甲醇和乙醇在超临界二氧化碳中的无限稀释扩散系数进行了模拟计算, 并应用泰勒分散理论, 采用超临界色谱仪对模拟结果进行了实验验证. 模拟计算值与实验值较吻合, 且变化规律基本一致, 表明采用这种新方法可以准确有效地预测超临界体系的扩散性质, 能够方便地应用于工程设计. 相似文献
12.
TATB基PBX结合能的分子动力学模拟 总被引:15,自引:0,他引:15
用分子动力学(MD)方法, 模拟计算了四种氟聚合物(聚偏二氟乙烯(PVDF)、聚三氟氯乙烯(PCTFE)、氟橡胶(F2311)、氟树脂(F2314))与TATB(1,3,5- 三氨基- 2,4,6- 三硝基苯)晶体的相互作用. 结果发现, 四种氟聚物与TATB的结合能大小排序为PVDF>F2311>F2314>PCTFE, 各氟聚物在TATB不同晶面上的结合能大小排序为(001)>(010)>(100), 结合能主要由分子间氢键决定. 相似文献
13.
分子动力学模拟苯和萘在超临界二氧化碳中的无限稀释扩散系数 总被引:4,自引:1,他引:4
采用球型模型和点位-点位模型对超临界二氧化碳的自扩散系数及苯或萘在超临界二氧化碳中的无限稀释扩散系数进行了分子动力学模拟。结果表明,球型模型及点位-点位模型均可较准确地预测二氧化碳的自扩散系数,球型模型因形式简单,准确度相对较差;点位-点位模型准确度虽高,但需较长的模拟机时。两种位能模型所获得的准确度相当,但点位-点位模型可以更精细地反映体系的微观结构。 相似文献
14.
采用分子动力学模拟、蛋白质二级结构测定(DSSP)、口袋体积测量(POVME)以及MM-PBSA(molecular mechanics Poisson-Boltzmann surface area)方法, 系统研究了金黄色葡萄球菌丝状温度敏感性蛋白Z (SaFtsZ)-二磷酸鸟苷(GDP)二元复合物和SaFtsZ-GDP-3MBA (3-甲氧基苯甲酰胺)类衍生物三元复合物体系的稳定性、蛋白质二级结构、蛋白质构象、关键残基质心距、活性口袋体积以及相对结合自由能的变化规律. 研究表明: 当不含抑制剂存在时SaFtsZ-GDP二元复合物体系稳定性较差, 其T7Loop区域残基(203-209)波动较大, 且蛋白二级结构发生明显变化, 活性口袋体积急剧减小, 底物通道显著变窄且不稳定. 而含有抑制剂PC190723、Compound1 的类衍生物三元复合物体系的表现截然不同, 这主要是由于它们均能和活性口袋T7Loop区周围残基形成关键性的氢键以及疏水作用, 与FtsZ 蛋白紧密结合. 在SaFtsZ-GDP-3MBA三元复合物体系中, 3MBA仅能与活性口袋中部分残基形成疏水作用, 与FtsZ 蛋白亲和力较弱, 使其不能稳定地存在于活性口袋中, 进一步导致它的抗菌活性明显低于PC190723、Compound1. 这些发现深入揭示了3MBA类衍生物对FtsZ 蛋白的作用机制和影响规律, 为该类FtsZ 蛋白抑制剂的结构优化和产品开发应用提供了重要的理论依据. 相似文献
15.
异质核化在大气中广泛存在, 但是其微观核化机理鲜为人知, 本文应用分子动力学方法模拟过热氩蒸气在纳米球形固体颗粒物上异质核化的动态特性, 讨论不同的冷却率对核化过程中系综温度、团簇分布、团簇大小以及核化速率的影响. 结果显示, 系综内蒸气的核化温度随着冷却率的增加而降低, 预先存在的球形固体颗粒在团簇的形成阶段起着重要的作用, 而且存在一个临界冷却率1.80×10-9J·s-1. 在该冷却率下, 在异质核化系综内均质核化出现, 并与异质核化共存, 但是异质核化在整个核化过程中仍然占主导地位. 相似文献
16.
水溶性聚合物与方解石晶体相互作用的MD模拟 总被引:11,自引:0,他引:11
用分子动力学(MD)方法, 模拟计算了三种水溶性聚合物阻垢剂[聚丙烯酸(PAA)、聚甲基丙烯酸(PMAA)、丙烯酸-丙烯酸甲酯共聚物(AA-MA)]与方解石晶体的作用. 结果表明, 聚合物与方解石两晶面结合能的大小均为PAA > AA-MA > PMAA, 聚合物与(1 0)面的相互作用远比与(104)面的作用强. 对体系各种相互作用以及对关联函数g(r)的分析表明, 结合能主要由库仑作用决定. 与方解石晶面结合的聚合物发生扭曲变形, (1 0)面上的形变能约为(104)面上的2倍, 但均远小于相应的非键作用能. 聚合物中不同位置羧基的动力学行为差别很大, 链端羧基的运动翻转比链中部羧基剧烈得多, 后者与方解石晶体的结合比前者牢固而能更有效地抑制垢晶体生长. 相似文献