首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以F127为模板剂,NiCl2为镍源,尿素为氮源,间苯二酚甲醛原位聚合树脂为碳源,分别采用均相法和两相法制备Ni-N-OMC-1,Ni-N-OMC-2纳米复合材料.X射线衍射(XRD)、激光拉曼以及透射电子显微镜(TEM)等测试结果表明,复合材料具有有序介孔结构,Ni以金属微粒形式嵌于碳骨架中,提高了有序介孔碳的石墨化程度.X射线光电子能谱测试(XPS)表明尿素热解后以4种形式存在:sp3杂化与C结合的N原子,吡啶N原子,sp2杂化与C结合的N原子以及quaternary-N原子.Ni-N的共改性改变了碳载体的理化性质,有利于Pt纳米粒子的负载与分散.均相法制备的Ni-N-OMC-1复合材料微波负载Pt后,氧还原极限电流密度为5.32mA·cm-2,氢氧化电化学活性面积高达138.53m2·g-1,电化学催化活性优于商业20%Pt/C材料(4.49mA·cm-2,96.98m2·g-1).  相似文献   

2.
炔碳材料是一种新兴的二维碳同素异形体,具有一定的导电性和较高的比表面积,其sp2sp型杂化碳组成的多孔结构,拓展了离子输运通道,提升了电荷转移能力,在能量储存与转化领域展现出广阔的应用前景。γ-石墨单炔(γ-GY)是理论上结构最稳定的单炔类炔碳材料,具有稳定的共轭体系、独特的三角孔结构,有助于离子的脱嵌和迁移;同时γ-GY还具有良好的半导体性能,在光电催化方面也具有很大的应用潜力。另外,通过异原子掺杂或前驱体分子结构设计调控γ-GY的构型和电子排布,有利于拓展γ-GY在能源领域的应用。本文重点总结了γ-GY的制备方法及其在锂(钠、钾)离子电池和光电催化方面的应用研究进展,提出了γ-GY类材料面临的挑战与机遇,并展望其在能源领域的发展趋势。  相似文献   

3.
炔碳材料是一种新兴的二维碳同素异形体,具有一定的导电性和较高的比表面积,其sp2sp型杂化碳组成的多孔结构,拓展了离子输运通道,提升了电荷转移能力,在能量储存与转化领域展现出广阔的应用前景。γ-石墨单炔(γ-GY)是理论上结构最稳定的单炔类炔碳材料,具有稳定的共轭体系、独特的三角孔结构,有助于离子的脱嵌和迁移;同时γ-GY还具有良好的半导体性能,在光电催化方面也具有很大的应用潜力。另外,通过异原子掺杂或前驱体分子结构设计调控γ-GY的构型和电子排布,有利于拓展γ-GY在能源领域的应用。本文重点总结了γ-GY的制备方法及其在锂(钠、钾)离子电池和光电催化方面的应用研究进展,提出了γ-GY类材料面临的挑战与机遇,并展望其在能源领域的发展趋势。  相似文献   

4.
用XPS和XAES分析电化学沉积的DLC膜   总被引:2,自引:0,他引:2       下载免费PDF全文
采用电化学沉积方法,以甲醇溶剂作碳源,直流电压作用下在单晶硅表面沉积得到碳薄膜。通过研究石墨、金刚石和样品薄膜的XPS和XAES谱图特征,证明了此方法沉积得到的是DLC薄膜;利用曲线拟合技术在C1s电子能谱图中拟合出sp3峰与sp2峰,并计算出样品薄膜中sp3碳的相对含量为55%;研究石墨、金刚石和样品薄膜的一阶微分XAES谱图,用线性插入法估算出样品薄膜中sp3碳的相对含量为60%。  相似文献   

5.
以氧化石墨凝胶制备的氧化石墨烯溶胶为前驱体, 在120-220 ℃条件下, 采用水热法制备了系列不同还原程度的三维还原氧化石墨烯, 采用扫描电镜(SEM), X射线衍射(XRD), 傅里叶变换红外(FTIR)光谱, X射线光电子能谱(XPS)和电化学测试等手段研究了水热反应温度对材料形貌、结构和超级电容性能的影响. 结果表明: 采用水热法制备的三维还原氧化石墨烯呈多孔网状结构, 材料的体积和内部网状孔径随着水热反应温度的升高而减小; 同时, 氧化石墨烯的还原程度随反应温度的升高而增加, 有序度提高, 其结构逐渐向着类石墨结构转化; 而材料的比电容和能量密度则随反应温度的升高呈现出先增大后减小的趋势, 且均以双电层电容为主;相比之下, 当水热反应温度为180 ℃时, 制备的三维还原氧化石墨烯具有最佳的超级电容性能, 在电解液为6mol·L-1的KOH溶液中, 0.5 A·g-1电流密度下其比电容达到315 F·g-1, 10 A·g-1时仍能保持212 F·g-1的高比容量, 能量密度为40.5 Wh·kg-1, 5000次循环后比电容保持率为86%, 表现出了良好的电化学性能.  相似文献   

6.
将硫代硫酸钠(Na2S2O3)与氧化石墨烯(GO)的混合溶液,在酸性条件下经过一步水热反应制备还原氧化石墨烯/硫(RGO/S)复合正极材料. 实验探索了水热温度、反应时间、碳硫质量比例对材料的影响. 通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电对材料进行分析. 结果表明在180 ℃下,碳硫质量比为3:7时,水热12 h得到的RGO/S复合材料具有优异的循环性能,首次放电比容量为931 mAh·g-1,50次循环之后其比容量还保持在828.16 mAh·g-1;RGO/S复合材料的充放电库仑效率在95%以上;同时RGO/S复合材料的倍率性能相比于单质硫有很大提高. 一步水热法能够使硫分子均匀分布在石墨烯片层结构中,同时加强了石墨烯表面基团对硫分子的固定作用.  相似文献   

7.
用INDO系列方法研究C78(CH2)2的18种可能异构体,表明最稳定异构体是42,43,62,63-C78(CH2)2,其中CH2加在C78(C2V)椭球长轴所穿过的同一六员环的两个6/6键上,形成类环丙烷结构。并对最稳定的四种异构体用B3LYP/3-21G方法进行了结构优化,在此基础上, 用INDO/CIS方法计算的C78(CH2)2稳定异构体的电子光谱的第一吸收峰和用AM1方法计算的碳笼上的C-C键的主要红外振动频率与C78(C2V)相比发生兰移,原因是C78(CH2)2具有较大的LUMO-HOMO能隙和由于加成带来的共轭体系变小。在B3LYP/3-21G水平上计算的13C NMR谱表明,被加成的C-C键上的C原子化学位移向高场移动, 这是因为sp2杂化的C 原子被转化为 sp3杂化的C 原子.  相似文献   

8.
燃料电池和金属-空气电池是将化学能直接转化成电能的绿色电池,具有能量密度高、安全和环保等优点,相比传统能源具有独特优势。然而,目前阴极氧还原反应(oxygen reduction reaction,ORR)使用的贵金属铂(Pt)储量低,成本高,易中毒失活,严重限制了燃料电池的大规模应用。因此,开发廉价、高效、稳定的非贵金属催化剂成为研究热点。碳纳米管具有本征sp2杂化结构、优异的导电性、高比表面积、良好的化学稳定性等突出优点,受到广泛关注。本文综述了碳纳米管基非贵金属ORR催化剂的最新进展,主要包括非金属掺杂、过渡金属-氮-碳纳米管、负载过渡金属及其衍生物(氧化物、碳化物、氮化物、硫化物等)、负载单原子、与其他碳材料(石墨烯、多孔碳、碳纳米纤维)复合以及碳纳米管基自支撑电极。最后,对碳纳米管基非贵金属ORR催化剂的研究前景和下一步研究方向进行了展望。  相似文献   

9.
首先利用硬模板法制备出介孔碳/石墨烯复合材料,然后向复合材料中引入具有赝电容活性的醌类分子进一步增大材料的电容性能。研究结果表明,负载30%(w/w)叔丁基氢醌的介孔碳/石墨烯复合材料具有最佳的电容性能,在电流密度为0.5 A·g-1时,比电容值为355 F·g-1;当电流密度高达30 A·g-1时,其比电容值高达226 F·g-1,比电容保持率为64%,表现出良好的速率特性。  相似文献   

10.
金属衬底上石墨烯的控制生长和微观形貌的STM表征   总被引:2,自引:0,他引:2  
张艳锋  高腾  张玉  刘忠范 《物理化学学报》2012,28(10):2456-2464
目前化学气相沉积(CVD)方法在不同的金属基底上大规模生长获得石墨烯得到了广泛的应用; 同时扫描隧道显微镜(STM)做为一种强大的精细直观的研究手段可以用于表征金属衬底上石墨烯的微观形貌, 指导石墨烯的控制生长. 本文侧重于Cu箔、Pt 箔和Ni 衬底上石墨烯的控制生长、表面微观形貌、表面缺陷态、堆垛形式的阐述, 得到结论: (1) 两种溶碳量较低的金属(Cu, Pt)上, 石墨烯的生长都符合表面催化的生长机制, 同时层间的范德华相互作用也可以诱导双层石墨烯的生长; (2) 衬底粗糙度的增加可以使石墨烯的电子态去简并化, 从而破坏石墨烯面内π键共轭结构, 导致部分碳原子转变为sp3杂化; (3) 原生的褶皱是由于界面热膨胀系数失配所导致; (4) Pt 箔表面石墨烯的平整度要远优于Cu箔表面的石墨烯, 且不同晶面共存的基底对于石墨烯的连续性并没有产生显著的影响.  相似文献   

11.
Carbon nanomaterials have attracted the attention of the scientific community for more than 30 years now; first with fullerene, then with nanotubes and now with graphene and graphene related materials. Graphene quantum dots (GQDs) are nanoparticles of graphene that can be synthesized following two approaches, namely top-down and bottom-up methods. The top-down synthesis used harsh chemical and/or physical treatments of macroscopic graphitic materials to obtain nanoparticles, while the second is based on organic chemistry through the synthesis of polycyclic aromatic hydrocarbons exhibiting various sizes and shapes that are perfectly controlled. The main drawback of this approach is related to the low solubility of carbon materials that prevents the synthesis of nanoparticles containing more than few hundreds of sp2 carbon atoms. Here we report on the synthesis of a family of rectangular-shaped graphene quantum dots containing up to 162 sp2 carbon atoms. These graphene quantum dots are not functionalized on their periphery in order to keep the maximum similarity with nanoparticles of pure graphene. We chose water with sodium deoxycholate surfactant to study their dispersion and their optical properties (absorption, photoluminescence and photoluminescence excitation). The electronic structure of the particles and of their aggregates are studied using Tight-Binding (TB). We observe that the larger particles ( GQD 3 and GQD 4 ) present a slightly better dispensability than the smaller ones, probably because the larger GQDs can accommodate more surfactant molecules on each side, which helps to stabilize their dispersion in water.  相似文献   

12.
Hybrid nanocarbon, comprised of a diamond core and a graphitic shell with a variable sp2‐/sp3‐carbon ratio, is controllably obtained through sequential annealing treatment (550–1300 °C) of nanodiamond. The formation of sp2 carbon increases with annealing temperature and the nanodiamond surface is reconstructed from amorphous into a well‐ordered, onion‐like carbon structure via an intermediate composite structure—a diamond core covered by a defective, curved graphene outer shell. Direct dehydrogenation of propane shows that the sp2‐/sp3‐nanocomposite exhibits superior catalytic performance to that of individual nanodiamond and graphitic nanocarbon. The optimum catalytic activity of the diamond/graphene composite depends on the maximum structural defectiveness and high chemical reactivity of the ketone groups. Ketone‐type functional groups anchored on the defects/vacancies are active for propene formation; nevertheless, once the oxygen functional groups are desorbed, the defects/vacancies alone might be active sites responsible for the C?H bond activation of propane.  相似文献   

13.
The thermal decomposition of graphene oxide (GO) is a complex process at the atomic level and not fully understood. Here, a subclass of GO, oxo‐functionalized graphene (oxo‐G), was used to study its thermal disproportionation. We present the impact of annealing on the electronic properties of a monolayer oxo‐G flake and correlated the chemical composition and topography corrugation by two‐probe transport measurements, XPS, TEM, FTIR and STM. Surprisingly, we found that oxo‐G, processed at 300 °C, displays C?C sp3‐patches and possibly C?O?C bonds, next to graphene domains and holes. It is striking that those C?O?C/C?C sp3‐separated sp2‐patches a few nanometers in diameter possess semiconducting properties with a band gap of about 0.4 eV. We propose that sp3‐patches confine conjugated sp2‐C atoms, which leads to the local semiconductor properties. Accordingly, graphene with sp3‐C in double layer areas is a potential class of semiconductors and a potential target for future chemical modifications.  相似文献   

14.
The paper presents the results of numerical simulation aimed at studying the deformation behavior of carbon structures containing carbon atoms with various coordination numbers and, consequently, various electronic configurations and properties. Namely, the method of molecular dynamics was used to study the deformation behavior of two different structures of crumpled graphene (sp2-material formed by graphene flakes bonded by Van der Waals forces) and carbon diamond-like phases (rigid sp3-structures) under hydrostatic compression. Stress-strain curves have been obtained, structural features have been shown to affect mechanical properties of three-dimensional carbon structures.  相似文献   

15.
A general strategy for simultaneously generating surface‐based supramolecular architectures on flat sp2‐hybridized carbon supports and independently exposing on demand off‐plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface‐confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self‐assembly on flat C(sp2)‐based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid–solid interface and molecular mechanics modeling studies. The successful self‐assembly on graphene, together with the possibility to transfer the graphene monolayer onto various substrates, should considerably extend the application of our functionalization strategy.  相似文献   

16.
The electrochemical performance of LiFePO4/C composites in lithium cells is closely correlated to pressed pellet conductivities measured by AC impedance methods. These composite conductivities are a strong function not only of the amount of carbon but of its structure and distribution. Ideally, the amount of carbon in composites should be minimal (less than about 2 wt%) so as not to decrease the energy density unduly. This is particularly important for plug-in hybrid electric vehicle applications (PHEVs) where both high power and moderate energy density are required. Optimization of the carbon structure, particularly the sp2/sp3 and disordered/graphene (D/G) ratios, improves the electronic conductivity while minimizing the carbon amount. Manipulation of the carbon structure can be achieved via the use of synthetic additives including iron-containing graphitization catalysts. Additionally, combustion synthesis techniques allow co-synthesis of LiFePO4 and carbon fibers or nanotubes, which can act as “nanowires” for the conduction of current during cell operation.  相似文献   

17.
Nanodiamond–graphene core–shell materials have several unique properties compared with purely sp2‐bonded nanocarbons and perform remarkably well as metal‐free catalysts. In this work, we report that palladium nanoparticles supported on nanodiamond–graphene core–shell materials (Pd/ND@G) exhibit superior catalytic activity in CO oxidation compared to Pd NPs supported on an sp2‐bonded onion‐like carbon (Pd/OLC) material. Characterization revealed that the Pd NPs in Pd/ND@G have a special morphology with reduced crystallinity and are more stable towards sintering at high temperature than the Pd NPs in Pd/OLC. The electronic structure of Pd is changed in Pd/ND@G, resulting in weak CO chemisorption on the Pd NPs. Our work indicates that strong metal–support interactions can be achieved on a non‐reducible support, as exemplified for nanocarbon, by carefully tuning the surface structure of the support, thus providing a good example for designing a high‐performance nanostructured catalyst.  相似文献   

18.
Excitation‐dependent photoluminescence (PL) is a well‐known property of graphene quantum dots (GQDs). For the development of carbon‐based photofunctional materials, GQDs possessing uniform PL properties are in high demand. A protocol has been established to separate spectroscopically uniform lipophilic GQD‐ 1 a from a mixture of GQD‐ 1 mainly composed of GQD‐ 1 a and GQD‐ 1 b . The mixture of GQD‐ 1 was synthesized through the reaction of p‐methoxybenzylamine with GQD‐ 2 prepared from graphite by common oxidative exfoliation. Size‐exclusion chromatography gave rise to GQD‐ 1 a and GQD‐ 1 b , with diameters of 19.8 and 4.9 nm, respectively. Large GQD‐ 1 a showed that the PL was fairly independent of the excitation wavelengths, whereas the PL of small GQD‐ 1 b was dependent on excitation. The excitation‐dependent nature is most likely to be associated with the structures of sp2 domains on the graphene surfaces. The large sp2‐conjugated surface of GQD‐ 1 a is likely to possess well‐developed and large sp2 domains, the band gaps of which do not significantly vary. The small sp2‐conjugated surface of GQD‐ 1 b produces small sp2‐conjugated domains that generate band gaps differing with domain sizes.  相似文献   

19.
Graphyne, a lattice of benzene rings connected by acetylene bonds, is one-atom-thick planar sheet of sp- and sp2-bonded carbons differing from the hybridization of graphene (considered as pure sp2). Here, HCN adsorption on the pristine and Si-doped graphynes was studied using density-functional calculations in terms of geometric, energetic, and electronic properties. It was found that HCN molecule is weakly adsorbed on the pristine graphyne and slightly affects its electronic properties. While, Si-doped graphyne shows high reactivity toward HCN, and, in the most favorable state, the calculated adsorption energy is about ?10.1 kcal/mol. The graphyne, in which sp-carbon was substituted by Si atom, is more favorable for HCN adsorption in comparison with sp2-carbon. It was shown that the electronic properties of Si-doped graphyne are strongly sensitive to the presence of HCN molecule and therefore it may be used in sensor devices.  相似文献   

20.
Guo P  Song H  Chen X  Ma L  Wang G  Wang F 《Analytica chimica acta》2011,(2):17818-155
The structure and electronic properties of graphene nanosheet (GNS) render it a promising conducting agent in a lithium-ion battery. A graphite electrode loaded with GNS exhibits superior electrochemical properties including higher rate performance, increased specific capacity and better cycle performance compared with that obtained by adding the traditional conducting agent–acetylene black. The high-quality sp2 carbon lattice, quasi-two-dimensional crystal structure and high aspect ratio of GNS provide the basis for a continuous conducting network to counter the decrease in electrode conductivity with increasing number of cycles, and guarantee efficient and fast electronic transport throughout the anode. Effects of GNS loading content on the electrochemical properties of graphite electrode are investigated and results indicate that the amount of conductive additives needed is decreased by using GNS. The kinetics and mechanism of lithium-storage for a GNS-loaded electrode are explored using a series of electrochemical testing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号