首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
张霞  张强  赵东霞 《化学学报》2012,70(3):60-66
利用分子动力学模拟方法对纯水溶液的氢键转化动力学性质进行了深入的微观探讨,溶液中非氢键构型为寿命较短(0.1~0.2 ps)的过渡态构型,我们发现氢键交换通过两种过渡构型完成,氢键角度扭曲激发后与氢键第一壳层水分子沿路径1交换,氢键径向拉伸激发后与氢键第二壳层水分子沿路径2交换,过渡态路径的选择具有温度依赖性.氢键转化需在旧氢键受体氢键过量和新氢键受体氢键不足,同时满足交换反应空间结构要求下才能完成.氢键交换反应对水分子平动和转动行为起着决定作用.  相似文献   

2.
高岭石-水体系中水分子结构的分子动力学模拟   总被引:1,自引:0,他引:1  
以Hendricks模型为初始结构, 利用CLAYFF力场对高岭石-水体系进行无晶体学限制的分子动力学模拟. 结果表明, 层间水有三种类型: I型类似于Costanzo提出的“洞水”分子, 其HH矢量(水分子中从一个氢原子位置指向另一个氢原子位置的方向矢量)平行于(001)平面, 而C2轴稍微倾斜于(001)面法线; II型类似于“连接水”, 一个氢氧键指向临近的层间四面体氧形成氢键, 另一个氢氧键与(001)面近似平行; III型水分子在层间近似保持为竖直状, 一个氢与层间四面体氧形成氢键, 而另一个氢与对面层的羟基氧形成氢键. 高岭石羟基氢沿(001)晶面法线的浓度曲线显示一部分羟基指向变为近似平行于(001)面, 羟基氧因此能够暴露出来与层间水分子氢形成氢键. 此外, 模拟中还观察到部分II型水分子氧偏离于层间的平均位置而更靠近四面体层, 这和Costanzo的实验结果一致, 可能是X射线谱图中(002)弱衍射峰出现的原因.  相似文献   

3.
使用石英振荡管密度计精确测定了298.15K温度下不同浓度的甘露醇-正丙醇-水和甘露醇-异丙醇-水三元溶液的密度.计算了甘露醇的表观摩尔体积VΦ和极限偏摩尔体积VΦ,得到了其由纯水溶剂转移至混合溶剂中的迁移偏摩尔体积ΔtrsVΦ.结果表明,正丙醇在溶液中对甘露醇体积性质的影响较异丙醇显著.从溶质-溶剂分子间相互作用及丙醇同分异构体中羟基位置的不同对体积性质的变化规律进行了讨论.  相似文献   

4.
使用石英振荡管密度计精确测定了298.15 K温度下不同浓度的甘露醇-正丙醇-水和甘露醇-异丙醇-水三元溶液的密度. 计算了甘露醇的表观摩尔体积VΦ和极限偏摩尔体积, 得到了其由纯水溶剂转移至混合溶剂中的迁移偏摩尔体积. 结果表明, 正丙醇在溶液中对甘露醇体积性质的影响较异丙醇显著. 从溶质-溶剂分子间相互作用及丙醇同分异构体中羟基位置的不同对体积性质的变化规律进行了讨论.  相似文献   

5.
共振散射相关光谱一种新的单颗粒探测方法   总被引:3,自引:1,他引:2  
基于共焦构型构建了共振散射相关光谱新方法, 阐明了共振散射相关光谱的原理, 并利用纳米金的共振散射特性, 将纳米金标记到生物分子上. 考察了该系统的重现性以及溶液粘度、粒径、浓度和激光能量对金纳米粒子在溶液中扩散行为的影响. 结果表明, 共振散射相关光谱可以替代荧光相关光谱, 应用于生物分析和某些生物系统研究.  相似文献   

6.
用时间分辨-傅里叶变换红外发射光谱研究了热的氢原子与CO2分子间高效率的平动-振动(T-V)能传递.热的氢原子由ArF激光光解H2S得到,这种氢原子的平动能为223 kJ/mol.实验中观察到了从2130 cm-1到2400 cm-1的红外发射谱带,它归属于高振动激发的CO2分子的非对称伸缩振动(v3).对这一发射谱带的光谱拟合显示CO2的非对称伸缩振动被激发到了较高的振动态,振动量子数达到了v=7.并且有5580 cm-1的能量经传能过程由氢原子到达了CO2的v3模.实验条件下氢原子与CO2的T-V传能效率为0.30.实验结果与Schatz等人的用3D半经典计算预测的碰撞截面符合的很好.  相似文献   

7.
采用分子动力学方法,模拟了273.15K下聚乙烯醇(PVA)对甲烷水合物的分解作用.研究发现,PVA浓度为2.7wt%时,水分子始终在其平衡位置附近波动,扩散系数仅为1.04×10-11m2/s;PVA浓度为5.2wt%时,水合物笼型结构坍塌,水分子以液态水的形式存在,甲烷分子从孔穴中逸出,聚乙烯醇的羟基在分子内部形成氢键,形成团簇,产生空间位阻,阻止了水分子再生成水合物,水分子的扩散系数1.61×10-9m2/s;PVA浓度为7.6wt%时,甲烷水合物周围有部分笼型结构被破坏,部分甲烷分子从孔穴中逸出,水分子扩散系数为3.55×10-10m2/s.得出聚乙烯醇对甲烷水合物的分解作用大小为:5.2wt%7.6wt%2.7wt%,为PVA溶液促进甲烷水合物分解实验研究提供参考.  相似文献   

8.
用激光光散射技术研究了丙烯酰胺 丙烯酸共聚物 (简称P(AM AA) )的溶液行为 .结果表明 ,纯水中P(AM AA)分子的流体力学半径Rh的分布存在 10 0~ 5 0 0nm的范围 ,与溶液中的网状结构对应 .当加入NaCl后 ,Rh 分布变窄 ,集中在 10 0nm以下的范围内 ,10 0~ 5 0 0nm这一范围消失 ,说明P(AM AA)在纯水溶液中主要以网状结构存在 ,小分子盐如NaCl的加入会破坏这种网状结构 .网状结构的破坏导致溶液稳定性下降 ,在0 1mol LNaCl溶液中 ,当c c 时 ,放置一段时间后 ,溶液中出现白色絮状沉淀 .  相似文献   

9.
通过193nm光解丁烯酮分子产生乙烯基自由基(·C2H3).经射流冷却后,以另一束可调谐激光光解·C2H3,生成的氢原子碎片经共振增强多光子电离(REMPI)过程,记录氢离子信号随光解波长变化,得到21180 ̄21320cm-1范围内乙烯基A!2A″(!′5,6,8=1)←X!2A′(!″=0)跃迁的振转光谱.结合量化计算和光谱拟合,对该段光谱进行了细致的振转分析,确定了各振动谱带位置,识别了其中主要的转动跃迁.由光谱拟合得到各振动能级的预解离寿命,讨论了其与振动模式及激发转动量子数的依赖关系,证实了理论预测的乙烯基A!2A″电子态的面内解离机制.  相似文献   

10.
在只考虑弯曲振动与总角动量的耦合,而冻结伸缩振动的模型下,采用Jacobi多项式作为弯曲振动的基函数,用严格的变分法研究了H_2O分子的振转激发态的成簇现象.本文计算了H_2O分子的振转能级和函数,研究了振动激发态下转动高激发态光谱中出现的成簇态.  相似文献   

11.
Motion of water molecules in Aerosol OT [sodium bis(2-ethylhexyl) sulfosuccinate, AOT] reverse micelles with water content w(0) ranging from 1 to 5 has been explored both experimentally through quasielastic neutron scattering (QENS) and with molecular dynamics (MD) simulations. The experiments were performed at the energy resolution of 85 microeV over the momentum transfer (Q) range of 0.36-2.53 A(-1) on samples in which the nonpolar phase (isooctane) and the AOT alkyl chains were deuterated, thereby suppressing their contribution to the QENS signal. QENS results were analyzed via a jump-diffusion/isotropic rotation model, which fits the results reasonably well despite the fact that confinement effects are not explicitly taken into account. This analysis indicates that in reverse micelles with low-water content (w(0)=1 and 2.5) translational diffusion rate is too slow to be detected, while for w(0)=5 the diffusion coefficient is much smaller than for bulk water. Rotational diffusion coefficients obtained from this analysis increase with w(0) and are smaller than for bulk water, but rotational mobility is less drastically reduced than translational mobility. Using the Faeder/Ladanyi model [J. Phys. Chem. B 104, 1033 (2000)] of reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function F(S)(Q,t) for water hydrogens. Comparison of the time Fourier transform of this F(S)(Q,t) with the QENS dynamic structure factor S(Q,omega), shows good agreement between the model and experiment. Separate intermediate scattering functions F(S) (R)(Q,t) and F(S) (CM)(Q,t) were determined for rotational and translational motion. Consistent with the decoupling approximation used in the analysis of QENS data, the product of F(S) (R)(Q,t) and F(S) (CM)(Q,t) is a good approximation to the total F(S)(Q,t). We find that the decay of F(S) (CM)(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior is due to lower water mobility close to the interface and to confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay. However, rotational mobility of O-H bond vectors in the interfacial region remains fairly high due to the lower density of water-water hydrogen bonds in the vicinity of the interface.  相似文献   

12.
The motion of water molecules in mixtures of water and d6-dimethyl sulfoxide (DMSO) has been explored through molecular dynamics (MD) simulations using the SPC/E water model (J. Chem. Phys. 1987, 91, 6269) and the P2 DMSO model (J. Chem. Phys. 1993, 98, 8160). We evaluate the self-intermediate scattering functions, FS(Q,t), which are related by a Fourier transform to the incoherent structure factors, S(Q,omega), measured in quasielastic neutron scattering (QNS) experiments. We compare our results to recent QNS experiments on these mixtures reported by Bordallo et al. (J. Chem. Phys. 2004, 121, 12457). In addition to comparing the MD data to the experimental signals, which correspond to a convolution of S(Q,omega) with a resolution function, we examine the rotational and translational components of FS(Q,t) and investigate to what extent simulation results for the single-molecule dynamics follow the dynamical models that are used in the analysis of the experimental data. We find that the agreement between the experimental signal and the MD data is quite good and that the portion of FS(Q,t) due to translational dynamics is well represented by the jump-diffusion model. The model parameters and their composition dependence are in reasonable agreement with experiment, exhibiting similar trends in water mobility with composition. Specifically, we find that water motion is less hindered in water-rich and water-poor mixtures than it is near equimolar composition. We find that the extent of coupling between rotational and translational motion contributing to FS(Q,t) increases as the equimolar composition of the mixture is approached. Thus, the decoupling approximation, which is used to extract information on rotational relaxation from QNS spectra at higher momentum transfer (Q) values, becomes less accurate than that in water-rich or DMSO-rich mixtures. We also find that rotational relaxation deviates quite strongly from the isotropic rotational diffusion model. We explore this issue further by investigating the behavior of orientational time correlations for different unit vectors and corresponding to Legendre polynomials of orders 1-4. We find that the rotational time correlations of water molecules behave in a way that is more consistent with the extended jump rotation model recently proposed by Laage and Hynes (Science 2006, 311, 832).  相似文献   

13.
The dynamics of water molecules confined in approximately cylindrical silica nanopores is investigated using molecular simulation. The model systems are pores of diameter varying between 20 and 40 ? containing water at room temperature and at full hydration, prepared using grand canonical Monte Carlo simulation. Water dynamics in these systems is studied via molecular dynamics simulation. The results of the basic characterization of these systems have been reported in A. A. Milischuk and B. M. Ladanyi [J. Chem. Phys. 135, 174709 (2011)]. The main focus of the present study is the self-intermediate scattering function (ISF), F(S)(Q, t), of water hydrogens, the observable in quasi-elastic neutron scattering experiments. We investigate how F(S)(Q, t) depends on the pore diameter, the direction and magnitude of the momentum transfer Q, and the proximity of water molecules to the silica surface. We also study the contributions to F(S)(Q, t) from rotational and translational motions of water molecules and the extent of rotation-translation coupling present in F(S)(Q, t). We find that F(S)(Q, t) depends strongly on the pore diameter and that this dependence is due mainly to the contributions to the ISF from water translational motion and can be attributed to the decreased mobility of water molecules near the silica surface. The relaxation rate depends on the direction of Q and is faster for Q in the axial than in the radial direction. As the magnitude of Q increases, this difference diminishes but does not disappear. We find that its source is mainly the anisotropy in translational diffusion at low Q and in molecular reorientation at higher Q values.  相似文献   

14.
We performed molecular dynamics simulations of ubiquitin with the distinct water models, TIP3P, SPC, SPC/E, and SPC/Fw, in different system sizes with different box shapes. The translational diffusion constants of pure water linearly depend on the effective box length, which is known as finite size effect, whereas the first and second rotational times of pure water are nearly constant. We then observed that both the overall translation and rotational motions of the protein are linearly correlated to the viscosity of pure water. As expected from the finite size effect in pure water, the translational diffusion of the protein is significantly affected by the system size, and rotational diffusion is nearly size-independent. After correction for the finite size effect, the SPC/E and SPC/Fw models reproduce both the translational and rotational motion of the protein relatively well. Thus, water models that reproduce the experimentally derived diffusional properties of pure water accurately are expected to also be suitable for simulating protein diffusion quantitatively.  相似文献   

15.
We have investigated the dynamics of water confined in a molecular sieve, with a cylindrical pore diameter of 10 A, by means of quasielastic neutron scattering (QENS). Both the incoherent and coherent intermediate scattering functions I(Q,t) were determined by time-of-flight QENS and the neutron spin-echo technique, respectively. The results show that I(Q,t) is considerably more stretched in time with a slightly larger average relaxation time in the case of coherent scattering. From the Q dependence of I(Q,t) it is clear that the observed dynamics is almost of an ordinary translational nature. A comparison with previous dielectric measurements suggests a possible merging of the alpha and beta relaxations of the confined water at T=185 K, although the alpha relaxation cannot be directly observed at lower temperatures due to the severe confinement. The present results are discussed in relation to previous results for water confined in a Na-vermiculite clay, where the average relaxation time from spin-echo measurements was found to be slower than in the present system (particularly at low temperatures).  相似文献   

16.
Quasielastic neutron scattering (QENS) spectra of water-filled MCM-41 samples (pore diameters: 21.4 and 28.4 Angstrom) were measured over the temperature range 238-298 K and the momentum transfer range 0.31-0.99 A(-1) to investigate the dynamics of confined water molecules. The spectra, which consist mainly of contributions from the translational diffusion of water molecules, were analyzed by using the Lorentzian and the stretched exponential functions. Comparison of the fits indicated that the latter analysis is more reliable than the former one. The fraction of immobile water molecules located in the vicinity of the pore walls, which give an elastic component, was found to be 0.044-0.061 in both pores. The stretch exponent beta was determined as 0.66-0.80. It was shown that the translational diffusion of water molecules in the pores is decelerated by confinement and that the deceleration becomes marked with a decrease in pore size. The ratios of the translational diffusion coefficient D(T) of confined water to that of bulk water at room temperature were within a range of 0.47-0.63.  相似文献   

17.
Dynamical motion of water sorbed in reverse osmosis polyamide membrane (ROPM) material is reported as studied by quasielastic neutron scattering (QENS) technique. The ROPM studied here has pore size of 4.4 Å as determined by positron annihilation lifetime spectroscopy. Analysis of the QENS data showed that diffusion behavior of the water within the membrane is describable by random jump diffusion model. A much longer residence time is found as compared to bulk water. Positive shift of the freezing point as observed in differential scanning calorimetry indicates presence of strong attractive interaction corroborating the slower diffusivity as observed in QENS.  相似文献   

18.
The dynamics of trehalose molecules in aqueous solutions confined in silica gel have been studied by quasielastic neutron scattering (QENS). Small-angle neutron scattering measurements confirmed the absence of both sugar clustering and matrix deformation of the gels, indicating that the results obtained are representative of homogeneous trehalose solutions confined in a uniform matrix. The pore size in the gel is estimated to be 18 nm, comparable to the distances in cell membranes. For the QENS measurements, the gel was prepared from D2O in order to accentuate the scattering from the trehalose. Values for the translational diffusion constant and effective jump distance were derived from model fits to the scattering function. Comparison with QENS and NMR results in the literature for bulk trehalose shows that confinement on a length scale of 18 nm has no significant effect on the translational diffusion of trehalose molecules.  相似文献   

19.
The hydrogen (H-) bonding interplay between water and other organic molecules is important both in nature and in a wide range of technological applications. Structural relaxation and, thus, diffusion in aqueous mixtures are generally dependent on both the strength and the structure of the H-bonds. To investigate diffusion in H-bonding mixtures, we present a quasielastic neutron scattering study of di-propylene glycol methylether (2PGME) mixed with H(2)O (or D(2)O) over the concentration range 0-90 wt.% water. We observe a nonmonotonic behavior of the dynamics with a maximum in average relaxation time for the mixture with 30 wt.% water, which is more than a factor 2 larger compared to that of either of the pure constituents. This is a result in qualitative agreement with previous calorimetric studies and the behavior of aqueous mixtures of simple mono-alcohols. More surprisingly, we notice that the dynamics of the 2PGME molecules in the mixture is slowed down by more than a factor 3 at 30 wt.% water but that the water dynamics indicates an almost monotonous behavior. Furthermore, in the low momentum transfer (Q) range of the 2PGME, where the intermediate scattering function I(Q,t) is considerably stretched in time (i.e., the stretching parameter β ? 1), it is evident for the 2PGME-D(2)O samples that the Q-dependence of the inverse average relaxation time, <τ>(-1), is greater than 2. This implies that the relaxation dynamics is partly homogenously stretched, i.e., the relaxation of each relaxing unit is somewhat intrinsically stretched in time.  相似文献   

20.
We generalize the microscopic na?ve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号