首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
生物降解多功能缓释微球的制备与表征   总被引:6,自引:1,他引:5  
梁晓飞  王汉杰  罗浩  田惠  支敏  王永兰  常津 《化学学报》2008,66(19):2178-2183
通过羧甲基壳聚糖接枝二甲基十八烷基环氧丙基氯化铵, 合成水油两溶性的羧甲基壳聚糖十八烷基季铵盐(OQCMC); 并将其作为乳化剂与乳酸-羟基乙酸(PLGA)和羟乙基纤维素(HEC)复合, 利用溶剂挥发法, 构建一种多功能的药物载体缓释系统, 并尝试包裹脂溶性药物盐酸米诺环素. 利用Transmission electron microscopy, Quasielastic laser light scattering, Zeta电位仪, FTIR, 1H NMR等对OQCMC及载药微球进行表征, 并进行药物的体外释放实验. 结果表明: OQCMC可作为一种优良的乳化剂对PLGA微球进行修饰; 并可使复合微球体系带正电, 在提高微球载药率(9.4%)的同时减小微球粒径[(166.4±0.8) nm]; 复合微球体系对盐酸米诺环素具有较好的物理包裹能力, 并有长效缓释作用(PBS, pH=7.9).  相似文献   

2.
聚羟基丁酸酯缓释微球的制备与性能   总被引:3,自引:0,他引:3  
用溶剂蒸发法制备了以新型生物可降解材料聚羟基丁酸酯为载体、以安定为模药的缓释微球,讨论了药物与载体之比对药物含量与包封率的影响,以及制备微球条件对药物释放性能的影响;微球平均粒径为30~40 μm,粒径分布在 1~1.5之间,最大载药量为19.51%;最高包封率为67.11%;体外累积释放曲线呈"两相"释放特征并拌随初始的"突释效应".扫描电镜观察微球表面呈皱缩表观形态结构,微球内部横断面具有孔道与孔洞,在4℃与室温(20~25 ℃)条件下密封,避光环境下性质稳定.  相似文献   

3.
采用偶联法使抗人晶状体上皮细胞单克隆抗体与聚乳酸载 5_氟尿嘧啶毫微球偶联 ,制备出靶向人晶状体上皮细胞的免疫毫微球。采用扫描电镜和透射电镜观察微球形貌和结构 ,用动态光散射粒径分析仪测载药毫微球粒径。ELISA法检测偶联后的抗体活性 ,间接免疫荧光法检测该免疫毫微球与晶状体上皮细胞的特异性结合能力。结果显示载药毫微球表面光滑 ,平均粒径为191 0± 0 2 0 2nm ,其载药率为 8 2 %。免疫载药毫微球中的单克隆抗体HILE6保留达到原免疫活性84 %。该免疫载药毫微球能与晶状体上皮细胞特异性结合。该实验为特异性抑制晶状体上皮细胞增殖 ,预防白内障术后并发症_后囊混浊提供了重要的科学依据  相似文献   

4.
香草醛交联壳聚糖载药微球的性能及其成球机理分析   总被引:7,自引:1,他引:6  
以壳聚糖溶液为水相、液体石蜡为油相形成油包水型乳液, 以香草醛为交联剂, 采用乳化交联法制得壳聚糖微球. 结合IR光谱和XRD测试, 分析了壳聚糖交联固化成球的机理: 壳聚糖和香草醛之间所发生的Schiff碱反应和氢键的形成以及缩醛化反应, 以此为基础共同形成交联结构从而使壳聚糖交联固化成球. 探讨了交联后壳聚糖微球结晶度降低的原因: 壳聚糖固化时分子链未充分进行有序的结晶排列, 交联后的壳聚糖结构较复杂, 从而破坏了原壳聚糖分子的规整性. 选用盐酸小檗碱为模型药物, 制备了香草醛交联的壳聚糖载药微球, SEM结果显示, 载药微球表面致密且球形度好, 微球粒径在5-15 μm之间. 此外, 采用分光光度计对载药微球的载药率、药物包封率和药物体外释放性质进行了测试和分析, 结果表明载药微球缓释效果明显.  相似文献   

5.
以自制阿司匹林为药物模型,壳聚糖(CS)为载体源,采用微乳液成核-离子交联法制备了阿司匹林/壳聚糖纳米缓释微球.分别用傅里叶变换红外(FTIR)光谱、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、动态激光光散射(DLLS)、X射线粉末衍射(XRD)等表征了纳米微粒的化学组成、外观形貌、平均粒径和粒径分布、微球中壳聚糖的晶体结构以及阿司匹林的分布形态.结果表明,利用微乳液成核-离子交联法制备的阿司匹林/壳聚糖微球平均粒径约为88nm且粒径分布均匀,成核后壳聚糖结晶形态基本未变,阿司匹林以分子形态分布于微粒中,分子间未形成堆砌,为无定形态.采用UV-Vis分光光度计考察了微球的药物包封率、载药量,并对微球在生理盐水和葡萄糖溶液中的释药行为进行跟踪.结果表明,微球的载药量可达55%,药物包封率可达42%,实验条件下具有较好的药物缓释作用.  相似文献   

6.
利用溶液法预先制备壳聚糖(Cs)-蒙脱土(MMT)复合材料(Cs-MMT),以Cs-MMT、Cs为原料,采用反相悬浮聚合法制得一种新型药物缓释体系阿司匹林-蒙脱土-壳聚糖载药微球(Asp-MMT-Cs)。采用FT-IR、SEM表征了Cs-MMT和Asp-MMT-Cs载药微球的结构及形态;设计正交实验优化了Asp-MMT-Cs载药微球的制备工艺;通过体外释放实验探讨了载药微球在不同模拟释放液中的释药规律。结果表明:所得微球球形度好,粒径分布较均匀;最优工艺制得的载药微球平均粒径为81.20μm,载药量为9.61%,包封率为76.78%。该缓释体系具有pH敏感性,更倾向于在pH较高的磷酸盐缓冲溶液中释放。  相似文献   

7.
首先采用一次乳化法制备出PLGA[聚(乳酸-羟基乙酸)]纳米微球,并通过静电吸附将阳离子聚合物壳聚糖修饰到PLGA微球表面,然后以香草醛为交联剂对壳聚糖进行化学交联,得到一种壳交联的p H响应型纳米微球(PCV),微球粒径为(277.60±38.01)nm,表面电位为(21.60±4.51)m V.微球稳定性评价结果显示微球在24 h内粒径变化较小;流式细胞仪检测显示细胞对PCV微球的摄取量比未经修饰的PLGA微球的摄取量高;空白微球细胞毒性实验表明在空白微球浓度小于80μg/m L时细胞的存活率达93.24%.以多西他赛(DTX)为模型药物进行包载,该纳米微球DTX的载药率为7.48%,包封率为34.98%;体外药物释放实验显示,该微球在p H=5.0环境下孵育90 h的药物积累释放率达58.66%,而在p H=7.4的环境下的药物积累释放率为50.63%;此外,载DTX微球毒性试验结果表明该载药微球对A549肺癌细胞有较强的杀伤作用,其IC50值可达0.0009μg/m L.  相似文献   

8.
水包油包固体乳化法制备蛋白药物缓释微球   总被引:1,自引:0,他引:1  
以牛血清白蛋白(BSA)为模型药物, 研究了一种新型载药微球的水包油包固体(S/O/W)乳化法. 用纳米尺寸的SiO2吸附溶液中的BSA, 得到粒径约为30 nm的含药粒子, 再用PLGA包裹含药粒子. 考察不同制备条件对载药量和包封率的影响, 并与传统的双乳法(W/O/W)进行了对比, 发现该制备方法提高了药物的载药量(由2.5%到3.1%)和包封率(由72%到90%以上), 同时提高了药物活性.  相似文献   

9.
田鹏  高保娇  陈英军 《催化学报》2011,32(3):483-489
先通过季铵化反应将吡啶甲醛(PyAL)基团键合于交联聚苯乙烯微球(CPS)表面,制得改性微球PyAL-CPS,再通过Adler反应,成功地实现了吡啶基卟啉(PyP)在CPS微球表面的同步合成与同载,制得功能微球PyP-CPS,它再与碘甲烷发生季铵化反应制成N-甲基吡啶基卟啉(MPyP)季铵盐,从而制得固载有阳离子卟啉的...  相似文献   

10.
载药微乳液相行为的研究   总被引:11,自引:0,他引:11  
提出了一种基于相图研究实现纳米药物载体可控制备的方法.采用微乳液控温相图绘制装置绘制了硬脂酸聚烃氧(40)酯(S-40)/聚氧乙烯聚氧丙烯醚嵌段共聚物(F-68)/单硬脂酸甘油酯(GMS)/水体系的拟三元相图,基于电导率测定值确定了微乳液的结构(W/O、双连续相和O/W),该体系同时存在液晶区域.乳化剂S-40/F-68的质量比为7:3.研究了脂溶性药物维甲酸(RA)对微乳液相行为的影响,结果表明RA的加入对微乳液的相行为影响较小.基于相图研究结果制备了维甲酸固体脂质纳米粒(RA-SLN),亚微米粒度分析仪(PCS)测定的平均粒径和透射电镜测试都表明RA-SLN为10 nm左右的球状粒子.  相似文献   

11.
12.
A series of well-defined amphiphilic linear-dendritic block copolymers (telodendrimers, MPEG-b-PAMAM-cholesterol) with 1,2,4 or 8 cholesteryl groups (named as P1, P2, P4, P8, respectively) were synthesized. Their chemical structures were characterized with 1H NMR and mass spectrum (MALDI-TOF MS). The telodendrimers could self-assemble into micelles in aqueous solution, and encapsulate chemotherapeutic drug doxorubicin (DOX) and paclitaxel (PTX) for combination therapy. All the telodendrimers could encapsulate DOX with similar capability. However, their drug-loading capability of PTX is increased with the increasing number of cholesteryl groups. P8 exhibited much higher PTX loading efficiency than its counterparts. Thus, P8 was selected for further application of drug delivery in the paper. The drug-loading micellar nanoparticles (NPs) of P8 were spherical in shape and their diameters were less than 150 nm which were determined by dynamic light scattering measurements (DLS) and transmission electron microscope (TEM). In vitro drug release experiment demonstrated that P8 exhibited a controlled release manner for both DOX and PTX, and the two drugs were released simultaneously. In vitro cytotoxicity experiment further demonstrated that the co-delivery of DOX and PTX in P8 exhibited better anti-cancer efficiency than the delivery systems encapsulated with single drug (DOX or PTX). This indicates a synergistic effect. The co-delivery system showed potential in future anti-cancer treatment.  相似文献   

13.
Delivery systems based on nanoparticles (NPs) have shown great potential to reduce side effects and improve the therapeutic efficacy. Herein, we report the one-pot synthesis of poly(ethylene glycol)-mediated zeolitic imidazolate framework-8 (ZIF-8) NPs for the co-delivery of an anticancer drug (i.e., doxorubicin) and a cell penetrating peptide containing histidine and arginine (i.e., H4R4) to improve the efficacy of therapeutic delivery. The cargo-encapsulated ZIF-8 NPs are pH-responsive, which are stable at neutral pH and degradable at acidic pH to release the encapsulated cargos. The released H4R4 can help for endosome/lysosome escape to enhance the cytotoxicity of the encapsulated drugs. In vivo studies demonstrate that the co-delivery of doxorubicin and H4R4 peptides can efficiently inhibit tumor growth without significant side effects. The reported strategy provides a new perspective on the design of drug delivery systems and brings more opportunities for biomedical applications.  相似文献   

14.
A thermo-sensitive chitosan-Pluronic copolymer (CP) was prepared by grafting mono-carboxyl Pluronic onto the chitosan using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Indomethacin (IMC)-loaded nanoaggregate (NA) was prepared using the synthesized CP by the direct dissolution method. The critical aggregate concentration (CAC), hydrodynamic size and surface morphology of the prepared CP nanoaggregate (CPNA) were characterized by fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM), respectively. The resulting CAC and the average diameter of CPNA were about 0.31 g/l and 120 nm, indicating high structural stability of CPNA and size favorable for intravenous delivery of drugs. In vitro release test of the IMC encapsulated into CPNA showed sustained release rate of IMC as compared with that from Pluronic micelle. Therefore, we can conclude that our CPNA can be a novel type of superior drug carrier for sustained delivery of hydrophobic drugs.  相似文献   

15.
The compound nanoparticles of chitosan (CS) and cyclodextrin (CD) loading with hydrophilic and hydrophobic drug simultaneously were prepared via the cross-linking method. Methotrexate (MTX) and calcium folinate (CaF) were selected as the model drugs. The prepared nanoparticles were characterized by FT-IR spectroscopy to confirm the cross-linking reaction between CS and cross-linking agent. X-ray diffraction (XRD) was performed to reveal the form of the drug after encapsulation. The average size of nanoparticles ranged from 308.4 ± 15.22 to 369.3 ± 30.01 nm. The nanoparticles formed were spherical in shape with high zeta potentials (higher than +30mV). In vitro release studies in phosphate buffer saline (pH 7.4) showed an initial burst effect and followed by a slow drug release. Cumulative release data were fitted to an empirical equation to compute diffusional exponent (n), which indicated the non-Fickian trend for drug release.  相似文献   

16.
In this study, a model hydrophilic drug (porphyrin) was encapsulated within hydrophobic polylactic acid (PLA) nanoparticles (NPs) with different crystallinity and the relevant release behaviors were investigated. The crystalline modification was done using a modified nanoprecipitation method, where homo and stereocomplexed PLA NPs with different average diameters based on varying polymer concentrations and solvent/nonsolvent ratios (S/N) were prepared. Entrapment efficiency and drug release of sterocomplexed-PLA NPs were compared with neat poly(l -lactic acid) (PLLA) NPs. Furthermore, to get the more sustained release, porphyrin-loaded NPs were immobilized within electrospun poly(d ,l -lactide-co-glycolide (PLGA) nanofibers (NFs). Outcomes revealed that solution concentration and solvent/nonsolvent ratio play significant roles in the formation of homo and stereocomplexed NPs. On the other hand, it was found that the formation of stereocrystals did not significantly affect the size and morphology of NPs compared with neat NPs. With regard to the entrapment efficiency and drug content, stereocomplexd-PLA NPs behave relatively the same as neat PLLA NPs while the more sustained release was observed for stereocomplexed NPs. Also, it was observed that electrospinning of PLGA solution loaded by NPs led to the uniform distribution of NPs into PLGA fibers. Encapsulating the drug-loaded NPs into nanofibers decreased the rate of drug release by 50% after 24 h, compared with direct loading of drug into PLGA NFs. We conclude that it is possible to tune the entrapment efficiency and modify the release rate of the drug by giving small changes in the process parameters without altering the physical properties of the original drug substance and polymer.  相似文献   

17.
We describe the preparation and characterization of hybrid block copolymer nanoparticles (NPs) for use as multimodal carriers for drugs and imaging agents. Stable, water-soluble, biocompatible poly(ethylene glycol)-block-poly(epsilon-caprolactone) NPs simultaneously co-encapsulating hydrophobic organic actives (beta-carotene) and inorganic imaging nanostructures (Au) are prepared using the flash nanoprecipitation process in a multi-inlet vortex mixer. These composite nanoparticles (CNPs) are produced with tunable sizes between 75 nm and 275 nm, narrow particle size distributions, high encapsulation efficiencies, specified component compositions, and long-term stability. The process is tunable and flexible because it relies on the control of mixing and aggregation timescales. It is anticipated that the technique can be applied to a variety of hydrophobic active compounds, fluorescent dyes, and inorganic nanostructures, yielding CNPs for combined therapy and multimodal imaging applications.  相似文献   

18.
《中国化学快报》2020,31(5):1153-1158
We herein propose a co-delivery approach where small interference RNA (siRNA) and anticancer chemotherapeutic drug are simultaneously loaded into a single delivery carrier for the combined treatment of breast cancer and metastasis prevention. The co-delivery vector is composed of chondroitin sulfate (CS)-coated β-cyclodextrin-polyethylenemine polymer, which is capable of loading paclitaxel (PTX) and siRNA simultaneously to form therapeutic nanocomplexes. The nanocomplex, termed as CP-PTX-siCD146-CS, is demonstrated to have strong active targeting ability towards CD44-overexpresing breast cancer cells. Moreover, the co-delivery of PTX and siRNA not only effectively inhibits cancer cells proliferation and induces apoptosis, but also well prevents metastasis. Importantly, CP-PTX-siCD146-CS nanocomplexes exhibit stronger cytotoxic effects and anti-metastatic effects on MBA-MD-231 breast cancer cells, in comparison with PTX or siCD146 mono-treatment. The current study defines a potential therapeutic strategy for the combined breast cancer treatment and metastasis prevention from a co-delivery perspective.  相似文献   

19.
We report the synthesis of chemically asymmetric silica nanobottles (NBs) with a hydrophobic exterior surface (capped with 3‐chloropropyl groups) and a hydrophilic interior surface for spatially selective cargo loading, and for application as nanoreactors and nanomotors. The silica NBs, which have a “flask bottle” shape with an average diameter of 350 nm and an opening of ca. 100 nm, are prepared by anisotropic sol–gel growth in a water/n‐pentanol emulsion. Due to their chemically asymmetric properties, nanoparticles (NPs) with hydrophilic or hydrophobic surface properties can be selectively loaded inside the NBs or on the outside of the NBs, respectively. A high‐performance nanomotor is constructed by selectively loading catalytically active hydrophilic Pt NPs inside the NBs. It is also demonstrated that these NBs can be used as vessels for various reactions, such as the in situ synthesis of Au NPs, and using Au NP‐loaded NBs as nanoreactors for catalytic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号