首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The irradiation of pure molecular oxygen (O(2)) and carbon dioxide (CO(2)) ices with 5 keV H(+) and He(+) ions was investigated experimentally to simulate the chemical processing of oxygen rich planetary and interstellar surfaces by exposure to galactic cosmic ray (GCR), solar wind, and magnetospheric particles. Deposited at 12 K under ultra-high vacuum conditions (UHV), the irradiated condensates were monitored on-line and in situ in the solid-state by Fourier transform infrared spectroscopy (FTIR), revealing the formation of ozone (O(3)) in irradiated oxygen ice; and ozone, carbon monoxide (CO), and cyclic carbon trioxide (c-CO(3)) in irradiated carbon dioxide. In addition to these irradiation products, evolution of gas-phase molecular hydrogen (H(2)), atomic helium (He) and molecular oxygen (O(2)) were identified in the subliming oxygen and carbon dioxide condensates by quadrupole mass spectrometry (QMS). Temporal abundances of the oxygen and carbon dioxide precursors and the observed molecular products were compiled over the irradiation period to develop reaction schemes unfolding in the ices. These reactions were observed to be dependent on the generation of atomic oxygen (O) by the homolytic dissociation of molecular oxygen induced by electronic, S(e), and nuclear, S(n), interaction with the impinging ions. In addition, the destruction of the ozone and carbon trioxide products back to the molecular oxygen and carbon dioxide precursors was promoted over an extended period of ion bombardment. Finally, destruction and formation yields were calculated and compared between irradiation sources (including 5 keV electrons) which showed a surprising correlation between the molecular yields (~10(-3)-10(-4) molecules eV(-1)) created by H(+) and He(+) impacts. However, energy transfer by isoenergetic, fast electrons typically generated ten times more product molecules per electron volt (~10(-2)-10(-3) molecules eV(-1)) than exposure to the ions. Implications of these findings to Solar System chemistry are also discussed.  相似文献   

2.
Mechanisms of the electron-induced degradation of three polymers utilized in aerospace applications (polyethylene (PE), polytetrafluoroethylene (PTFE), and polystyrene (PS)) were examined over a temperature range of 10 K to 300 K at ultra high vacuum conditions (~10(-11) Torr). These processes simulate the interaction of secondary electrons generated in the track of galactic cosmic ray particles in the near-Earth space environment with polymer material. The chemical alterations at the macromolecular level were monitored on-line and in situ by Fourier-transform infrared spectroscopy and mass spectrometry. These data yielded important information on the temperature dependent kinetics on the formation of, for instance, trans-vinylene groups (-CH=CH-) in PE, benzene (C(6)H(6)) production in PS, fluorinated trans-vinylene (-CF=CF-) and terminal vinyl (-CF=CF(2)) groups in PTFE together with molecular hydrogen release in PE and PS. Additional data on the radiation-induced development of unsaturated, conjugated bonds were collected via UV-vis spectroscopy. Temperature dependent G-values for trans-vinylene formation (G(-CH=CH-) ≈ 25-2.5 × 10(-4) units (100 eV)(-1) from 10-300 K) and molecular hydrogen evolution (G(H(2)) ≈ 8-80 × 10(-5) molecules (100 eV)(-1) from 10-300 K) for irradiated PE were calculated to quantify the degree of polymer degradation following electron irradiation. These values are typically two to three orders of magnitude less than G-values previously published for the irradiation of polymers with energetic particles of higher mass.  相似文献   

3.
Although the thermal degradation of polyacrylonitrile (PAN) is unchanged by blending with poly(methyl methacrylate) (PMMA), the degradation of PMMA is profoundly altered in the presence of PAN. The low temperature phase of the reaction is hindered although monomer is still the predominating product. At higher temperatures the monomer production gives way to the appearance of methanol, carbon dioxide, carbon monoxide and chain fragments which incorporate a variety of carbonyl structures.These results are interpreted in terms of initial reaction of methyl methacrylate units with the ammonia formed by degradation of the PAN. The amide-ester copolymer thus formed undergoes a complex degradation process at higher temperatures which includes inter unit cyclisations, chain fragmentation and the formation of methanol and oxides of carbon. Mechanisms are proposed and discussed.  相似文献   

4.
The thermal degradation of ammonium polyphosphate (APP), a commercial fire retardant, and its blends with poly(methyl methacrylate) (PMMA) have been studied by thermal volatilization analysis (TVA) and the degradation products identified. APP degrades under vacuum in three stages. Initially it condenses to an ultraphosphate (<260°C) with release of ammonia and water. Fragmentation follows (260–370°C), giving high-boiling ammonium salts of phosphate fragments and further ammonia and water. The polyphosphoric acid (PPA) which remains then undergoes extensive Fragmentation (>370°C). In the presence of APP, the normal depolymerization of PMMA to monomer competes with degradation reactions which form high-boiling chain fragments, methanol, carbon monoxide, dimethyl-ether, carbon dioxide, hydrocarbons, and char. These additional reactions are initiated principally by the PPA. Intramolecular cyclization occurs, resulting in the formation of anhydride, and ester groups are eliminated, methanol and carbon monoxide being evolved. Further degradation of the modified polymer leads to the other volatile products and the char.  相似文献   

5.
The exposure of icy Kuiper belt objects (KBOs) by ionizing radiation was simulated in this case of exposing carbon monoxide-nitrogen (CO-N(2)) ices by energetic electrons. The radiation-induced chemical processing was monitored on-line and in situ via FTIR spectroscopy and quadrupole mass spectrometry. Besides the array of carbon oxides being reproduced as in neat irradiated carbon monoxide (CO) ices studied previously, the radiation exposure at 10 K resulted in the formation of nitrogen-bearing species of isocyanato radical (OCN), linear (l-NCN), nitric oxide (NO), nitrogen dioxide (NO(2)), plus diazirinone (N(2)CO). The infrared assignments of these species were further confirmed by isotopic shifts. The temporal evolution of individual species was found to fit in first-order reaction schemes, prepping up the underlying non-equilibrium chemistry on the formation of OCN, l-NCN, and NO radicals in particular. Also unique to the binary KBO model ices and viable for the future remote detection is diazirinone (N(2)CO) at 1860 cm(-1) (2ν(5)) formed at lower radiation exposure.  相似文献   

6.
Carbon beam writing was employed as a method for maskless production of microscale capacitors in both insulating graphene oxide (GO) and poly(methyl methacrylate) (PMMA) matrix. The GO and PMMA foils were irradiated using a 5-MeV C3+ beam with micrometer scale resolution. As follows, the shape of the created microstructures and compositional changes was studied using the scanning electron microscopy/energy-dispersive X-ray spectroscopy method (SEM/EDS). The structural and compositional progression was characterized by Raman spectroscopy, Rutherford backscattering spectroscopy (RBS), and elastic recoil detection analysis (ERDA) spectroscopy. The improvement of the prepared structures' electrical properties was also studied, and it can be concluded that carbon irradiation leads to the removal of oxygen and hydrogen and to growth of the carbon domains, which is connected with the conductivity increase of the irradiated parts and capacitance of the final products in the order of pF.  相似文献   

7.
The thermal degradation of polyphenylenes and poly(phenylene oxides) was studied under vacuum at temperatures between 350 and 620°C. The volatile and solid degradation products were analyzed by mass spectroscopy, infrared spectroscopy, and elemental analysis. Overall mechanisms for the thermal breakdown have been proposed. Polyphenylene decomposes to form polymer carbon, while hydrogen is the major volatile product. Some ring breakdown occurs with evolution of methane. Poly(phenylene oxide) forms mainly low molecular weight chain fragments, partially with hydroxyl endgroups. Some of the ether linkages decompose with ring breakdown, yielding carbon monoxide, water, and some carbon dioxide. Pendent groups on polyphenylenes and poly(phenylene oxides) are removed at the lower temperatures. The hydroxyl group yields essentially carbon monoxide and dioxide (the carbon being supplied by the rings), the methyl group methane, and the methoxy group methane and some methanol.  相似文献   

8.
Here we report the first experimental detection of the C(s) symmetric nitroformyl radical, OCNO(X 2A') in a nitrogen-carbon dioxide matrix at 10 K using a Fourier transform infrared spectrometer (FTIR). The nu1 vibrational frequency was observed at 2113 cm(-1). This assignment was confirmed by follow-up experiments using isotopically labeled reactant molecules (15N, 18O, 13C). To synthesize this radical, we irradiated solid nitrogen-carbon dioxide ice mixtures with energetic electrons at 10 K. Suprathermal nitrogen atoms in their electronic ground and/or first electronically excited state were generated via the radiation induced degradation of molecular nitrogen; these atoms could then react with carbon dioxide to eventually yield the nitroformyl radical. We also investigated the kinetics of the formation of the nitroformyl radical and support the arguments with computations on the doublet and quartet OCNO potential energy surfaces (PESs).  相似文献   

9.
The degradation behaviour of several different blends of poly(methyl methacrylate) (PMMA) and zinc bromide, under programmed heating to 500°C, has been studied using thermal volatilisation analysis and spectroscopic investigation of the volatile degradation products. The samples were in the form of films cast from a common solution of the components in acetone; these films are found to be transparent, indicating compatibility of PMMA and ZnBr2. From studies of the visible spectra of cobalt bromide, PMMA and blends of PMMA with CoBr2, it has been argued that complex formation occurs between the polymer and the transition metal halides: structures are suggested.When degraded alone, PMMA gives only monomer as the degradation product. In the blends with ZnBr2 (or with CoBr2), the polymer becomes considerably less stable and the pattern of degradation becomes very complex, with a range of volatile products, of which methyl bromide, carbon dioxide and methanol are the major constituents; carbon monoxide and methane are also formed. It is proposed that complex formation facilitates the release of methyl bromide as the first stage of breakdown, with the formation of zinc methacrylate units in the polymer chain; depolymerisation is prevented or severely inhibited, depending on the amount of ZnBr2 present.  相似文献   

10.
The interaction of monosulfonate tetraphenyl porphyrin (H(2)TPPS(1)) with plant-esterase was investigated using fluorescence and UV-vis absorption spectroscopy. Fluorescence quenching, from which the binding parameters were evaluated, revealed that the quenching of the esterase by H(2)TPPS(1) resulted from the formation of a dye-esterase complex. According to the modified Stern-Volmer equation, the effective quenching constants (K(a)) between H(2)TPPS(1) and plant-esterase at four different temperatures (297 K, 300 K, 303 K, and 306 K) were obtained to be 14.132×10(5), 5.734×10(5), 2.907×10(5), and 2.291×10(5) M(-1), respectively. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be -181.67 kJ M(-1) and -0.49 kJ M(-1)K(-1), indicating that van der Waals force and hydrogen bonds were the dominant intermolecular force in stabilizing the complex. Site marker competitive experiments showed that the binding of H(2)TPPS(1) to plant-esterase primarily took place in the active site. The binding distance (r) was obtained to be 5.99 nm according to F?rster theory of non-radioactive energy transfer. The conformation of plant-esterase was investigated by synchronous fluorescence and UV-vis absorption spectroscopy, and the results confirmed some micro-environmental and conformational changes of plant-esterase molecules.  相似文献   

11.
Polymer nanoporous materials with periodic cylindrical holes were fabricated from microphase‐separated structure of diblock copolymers consisting of a radiation‐crosslinking polymer and a radiation‐degrading polymer through simultaneous crosslinking and degradation by γ‐irradiation. A polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA) diblock copolymer film that self‐assembles into hexagonally packed poly(methyl methacrylate) cylinders in polybutadiene matrix was irradiated with γ‐rays. Solubility test, IR spectroscopy, and TEM and SEM observations for this copolymer film in comparison with a polystyrene‐block‐poly(methyl methacrylate) diblock copolymer film revealed that poly(methyl methacrylate) domains were removed by γ‐irradiation and succeeding solvent washing to form cylindrical holes within polybutadiene matrix, which was rigidified by radiation crosslinking. Thus, it was demonstrated that nanoporous materials can be prepared by γ‐irradiation, maintaining the original structure of PB‐b‐PMMA diblock copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5916–5922, 2007  相似文献   

12.
A series of chalcone derivatives (1-4) were studied. The interaction between these ligands and calf thymus DNA was studied with UV-vis spectrophotometry, fluorescence and circular dichroism spectroscopy. The binding constants K were estimated at 0.5-4.6×10(5) M(-1). All these measurements indicated that the compounds behave as effective DNA-intercalating agents. Electrophoretic separation proved that ligands inhibited topoisomerase I at a concentration of 60 μM.  相似文献   

13.
This study aimed to evaluate the photocatalytic activities of poly(methyl methacrylate) (PMMA)/titanium dioxide (TiO2) nanofiber mat. TiO2 nanoparticles in crystal phase were first prepared by sol-gel process and then PMMA/TiO2 nanofiber mat was prepared through electrospinning. The composite (PMMA/TiO2) nanofiber mat was compared with that of pure PMMA nanofiber mat through performing FTIR and UV-Vis spectroscopy, scanning electron microscopy, thermogravimetric analysis, weight loss and water contact angle measurements. The photocatalytic activity of PMMA/TiO2 nanofiber mat was evaluated by investigating both the photocatalytic decomposition of a model dye, methylene blue, and photocatalytic degradation of the composite nanofiber mat in the ambient air under ultraviolet light irradiation.  相似文献   

14.
Carbon-doped anatase TiO(2) was prepared by a facile hydrothermal process without adding additional carbon source. The as-prepared sample shows highly efficient photocatalytic activity, which only requires 4min and is about 11 times higher than that of Degussa P25 TiO(2) in degradation of methyl orange (MO) dye under UV light irradiation. Moreover, a highly visible-light activity is also observed. UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy confirm that the carbon atoms are incorporated into the interstitial positions of TiO(2) lattice and form a strong interaction with titanium atoms and extend photoresponding range to 700nm. Surface photovoltage spectra (SPS) and transient photovoltage (TPV) suggest that the presence of interstitial carbons induce several localized occupied states in the gap, enhance the separation extent and restrain the recombination of the photo-induced electron and hole carriers in TiO(2).  相似文献   

15.
The electron stimulated reactions of methyl iodide (MeI) adsorbed on and suspended within amorphous solid water (ice) were studied using a combination of postirradiation temperature programmed desorption and reflection absorption infrared spectroscopy. For MeI adsorbed on top of amorphous solid water (ice), electron beam irradiation is responsible for both structural and chemical transformations within the overlayer. Electron stimulated reactions of MeI result principally in the formation of methyl radicals and solvated iodide anions. The cross section for electron stimulated decomposition of MeI is comparable to the gas phase value and is only weakly dependent upon the local environment. For both adsorbed MeI and suspended MeI, reactions of methyl radicals within MeI clusters lead to the formation of ethane, ethyl iodide, and diiodomethane. In contrast, reactions between the products of methyl iodide and water dissociation are responsible for the formation of methanol and carbon dioxide. Methane, formed as a result of reactions between methyl radicals and either parent MeI molecules or hydrogen atoms, is also observed. The product distribution is found to depend on the film's initial chemical composition as well as the electron fluence. Results from this study highlight the similarities in the carbon-containing products formed when monohalomethanes coadsorbed with amorphous solid water are irradiated by either electrons or photons.  相似文献   

16.
Thermal Volatilization Analysis (TVA) demonstrates that poly(methyl methacrylate) (PMMA) is stabilized by blending with polypropylene (PP). Although well-defined radical reactions occur in both polymers under 2537 Å radiation, there is no evidence of the formation of block or graft copolymers when blends of the two are irradiated. Preirradiation suppresses the amount of monomeric methyl methacrylate formed on subsequent thermal degradation. The missing methyl methacrylate units appear in the chain fragment fraction. The characteristics of the thermal degradation of blends of unirradiated PP with preirradiated PMMA are similar to those of unirradiated rather than pre-irradiated blends, thus emphasizing the importance of the PP component in determining the thermal stability of blends after irradiation. These observations are discussed mechanistically.  相似文献   

17.
Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH approximately 8-10) at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic) and 2,4,6-trihydroxybenzoic (phloroglucinic) acids, as well as the decarboxylation product of the latter--1,3,5-trihydroxybenzene (phloroglucinol). In accordance with the literature data, this process involves the cleavage of the gamma-pyrone fragment (ring C) of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxy)benzoic acid (depside). However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO) should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4%. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol), but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin), or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.  相似文献   

18.
INTRODUCTIONChitin is the second most naturally abundant biopolymer and is found in a variety of organisms, including fungalcell walls, the exoskeleton of crustaceans, skeletal tissue of mollusks and the integument of insects.When treated with alkali, chitin can be deactylated and turned into chitosan, which is a linear binaryheteropolysaccharide composed of (1-4) linked 2-acetamido-2-deoxy-β-D-glucopyranose and 2-amino-2-deoxy-β-D-glucopyranose residues. Chitosan has a wide variety of …  相似文献   

19.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

20.
The miscibility, morphology, and thermal properties of poly(vinyl chloride) (PVC) blends with different concentrations of poly(methyl methacylate) (PMMA) have been studied. The interaction between the phases was studied by FTIR and by measuring the glass transition temperature (Tg) of the blends using differential scanning calorimetry. Distribution of the phases at different compositions was studied through scanning electron microscopy. The FTIR and SEM results show little interaction and gross phase separation. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of the first and second stage of degradation in PVC in the presence of PMMA were higher than the pure. The stabilization effect on PVC was found most significant with 10 wt% PMMA content in the PVC matrix. These results agree with the isothermal degradation studies using dehydrochlorination and UV-vis spectroscopic results carried out on these blends. Using multiple heating rate kinetics the activation energies of the degradation process in PVC and its blends have been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号