首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A colorimetric sensor array for organics in water   总被引:1,自引:0,他引:1  
Molecular recognition of organic compounds in aqueous solutions is inherently challenging due to the potential interference from the very high concentration of water. Here we present a simple colorimetric sensor array that probes a wide range of chemical properties. By printing hydrophobic dyes on a hydrophobic membrane, sensor arrays are easily prepared that provide substantial chemical selectivity for the identification and quantification of various organics (both single compounds and complex mixtures) dissolved in water. It is possible to differentiate easily even among closely related organic compounds. Upon immersion in aqueous solutions, digital imaging of the dye array before and after exposure to an analyte provide a color change profile that is a fingerprint for the organic components of the solution. Facile identification of a wide variety of aqueous organic solutions is possible over a concentration range of 0.1 M to 1 muM. Complex mixtures present no inherent difficulty; for example, a series of commercial soft drinks were easily distinguished using the colorimetric sensor array approach.  相似文献   

2.
Miniaturized chemical multiplexed sensor array   总被引:4,自引:0,他引:4  
Miniaturized tin oxide semiconductor sensors are fabricated directly by site-specific dip-pen nanopatterning using precursor inks derived from the sol-gel method. The good flow characteristics and strong affinity of the sols to measurement electrodes enable intimate contact. The measurable, reproducible, and proportionate changes in the resistance of the sensors when exposed to trace quantities of oxidative and reducing gases constitute the basis for such sensors. These sensors show rapid response and ultrafast recovery for the detection of nitrogen dioxide and acetic acid. Furthermore, an array of eight miniaturized sensors is created by doping the pristine tin-based sol ink with different metal ions; the different responses of each sensor to certain gases constitute a reference response spectrum that can be used to recognize the gas. Such recognition ability, instant response and rapid recovery, compact size, and integration with the current microelectronics platform make the miniaturized sensor array a significant development for the on-site and real-time detection of life-threatening gases.  相似文献   

3.
Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid).  相似文献   

4.
Lim SH  Musto CJ  Park E  Zhong W  Suslick KS 《Organic letters》2008,10(20):4405-4408
Molecular recognition of sugars and a practical method to detect and discriminate among a large number of such similar analytes remain substantial scientific challenges. We report here a low-cost, simple colorimetric sensor array capable of identification and quantification of sugars and related compounds. Fifteen different monosaccharides, disaccharides, and artificial sweeteners were differentiated without error in 80 trials. Limits of detection at pH 7.4 for glucose were <1 mM, which is below physiologically important levels.  相似文献   

5.
Chang BY  Chow KF  Crooks JA  Mavré F  Crooks RM 《The Analyst》2012,137(12):2827-2833
We report a two-channel microelectrochemical sensor that communicates between separate sensing and reporting microchannels via one or more bipolar electrodes (BPEs). Depending on the contents of each microchannel and the voltage applied across the BPE, faradaic reactions may be activated simultaneously in both channels. As presently configured, one end of the BPE is designated as the sensing pole and the other as the reporting pole. When the sensing pole is activated by a target, electrogenerated chemiluminescence (ECL) is emitted at the reporting pole. Compared to previously reported single-channel BPE sensors, the key advantage of the multichannel architecture reported here is physical separation of the ECL reporting cocktail and the solution containing the target. This prevents chemical interference between the two channels.  相似文献   

6.
采用可视化阵列传感技术,以卟啉及其衍生物和指示剂作为传感元件,构建了一种对农药敏感的可视化学传感阵列。该传感阵列可以在常温常压下对浓度为0.1 mg/L的12种农药快速识别和分类,反应时间仅为1.5 min。采用聚类分析(HCA)和主成分分析(PCA)等统计学分析方法对检测结果进行分析,不同种类农药样品在聚类分析和主成分分析中均可以被准确归类。  相似文献   

7.
In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns (“fingerprints”) can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05–100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.  相似文献   

8.

This work reports on further development of an inhibition electrochemical sensor array based on immobilized bacteria for the preliminary detection of a wide range of organic and inorganic pollutants, such as heavy metal salts (HgCl2, PbCl2, CdCl2), pesticides (atrazine, simazine, DDVP), and petrochemicals (hexane, octane, pentane, toluene, pyrene, and ethanol) in water. A series of DC and AC electrochemical measurements, e.g., cyclic voltammograms and impedance spectroscopy, were carried out on screen-printed gold electrodes with three types of bacteria, namely Escherichia coli, Shewanella oneidensis, and Methylococcus capsulatus, immobilized via poly l-lysine. The results obtained showed a possibility of pattern recognition of the above pollutants by their inhibition effect on the three bacteria used. The analysis of a large amount of experimental data was carried out using an artificial neural network (ANN) programme for more accurate identification of pollutants as well as the estimation of their concentration. The results are encouraging for the development of a simple and cost-effective biosensing technology for preliminary in-field analysis (screening) of water samples for the presence of environmental pollutants.

Graphical abstract

  相似文献   

9.
10.
Changes in colors of an array of optical sensors that responds in full pH range were recorded using a CCD camera. The data of the camera were transferred to the computer through a capture card. Simple software was written to read the specific color of each sensor. In order to associate sensor array responses with pH values, a number of different mathematics and chemometrics methods were investigated and compared. The results show that the use of “Microsoft Excel's Solver” provides results which are in very good agreement with those obtained with chemometric methods such as artificial neural network (ANN) and partial least square (PLS) methods.  相似文献   

11.
Fluorescent sensor array in a microfluidic chip   总被引:1,自引:0,他引:1  
Miniaturization and automation are highly important issues for the development of high-throughput processes. The area of micro total analysis systems (muTAS) is growing rapidly and the design of new schemes which are suitable for miniaturized analytical devices is of great importance. In this paper we report the immobilization of self-assembled monolayers (SAMs) with metal ion sensing properties, on the walls of glass microchannels. The parallel combinatorial synthesis of sensing SAMs in individually addressable microchannels towards the generation of optical sensor arrays and sensing chips has been developed. [figure: see text] The advantages of microfluidic devices, surface chemistry, parallel synthesis, and combinatorial approaches have been merged to integrate a fluorescent chemical sensor array in a microfluidic chip. Specifically, five different fluorescent self-assembled monolayers have been created on the internal walls of glass microchannels confined in a microfluidic chip.  相似文献   

12.
A novel, simple, and rapid detector using a fluorescent sensor array for discrimination and quantification of different concentrations (ppb level) of pesticides was proposed in this paper. Employing porphyrin, porphyrin derivatives, and chemically responsive dyes as the sensing elements, the developed sensor array based on a cross-responsive mechanism showed a unique pattern of fluorescence changes upon the reaction that lasted just 10 min. The eigenvalues from raw fluorescence spectra were analyzed via a pattern recognition algorithm, including hierarchical cluster analysis (HCA), principal component analysis (PCA), and back-propagation neural network (BPNN). The results showed that HCA, which were used to assess the feasibility and effectiveness of discrimination of the fluorescent sensor array, revealed a distinct separation between different pesticides. PCA and BPNN were used for automatically predicting the concentration of pesticides, and the recovery was 91.29–109.81 % while the lowest relative standard deviation was up to 3.12 %. It indicates a detector based on the fluorescent sensor array is a rapid and feasible sensing platform for the discrimination and quantitative analysis of pesticides, and also shows the possibilities in the related fields of pesticides identification and detection.  相似文献   

13.
Polymer hydrogel microarrays were fabricated by inkjet printing of monomers and initiator, allowing up to 1800 individual polymer features to be printed on a single glass slide.  相似文献   

14.
A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and l-DOPA) and their mixtures in the concentration range of 0.25–30 μmol L−1. Finally, we found that the sensor had capability to identify the various catecholamines in urine sample.  相似文献   

15.
Preoxidation for colorimetric sensor array detection of VOCs   总被引:1,自引:0,他引:1  
A disposable preoxidation technique that dramatically improves the detection and identification of volatile organic compounds (VOCs) by a colorimetric sensor array is reported. Passing a vapor stream through a tube packed with chromic acid on silica immediately before the colorimetric sensor array substantially increases the sensitivity to less-reactive VOCs and improves the limits of detection (LODs) ~300-fold, permitting the detection, identification, and discrimination of 20 commonly found indoor VOC pollutants at both their immediately dangerous to life or health (IDLH) and permissible exposure limit (PEL) concentrations. The LODs of these pollutants were on average 1.4% of their respective PELs.  相似文献   

16.
Here we demonstrate design, fabrication, and testing of electronic sensor array based on single-walled carbon nanotubes (SWNTs). Multiple sensor elements consisting of isolated networks of SWNTs were integrated into Si chips by chemical vapor deposition (CVD) and photolithography processes. For chemical selectivity, SWNTs were decorated with metal nanoparticles. The differences in catalytic activity of 18 catalytic metals for detection of H(2), CH(4), CO, and H(2)S gases were observed. Furthermore, a sensor array was fabricated by site-selective electroplating of Pd, Pt, Rh, and Au metals on isolated SWNT networks located on a single chip. The resulting electronic sensor array, which was comprised of several functional SWNT network sensors, was exposed to a randomized series of toxic/combustible gases. Electronic responses of all sensor elements were recorded and the sensor array data was analyzed using pattern-recognition analysis tools. Applications of these small-size, low-power, electronic sensor arrays are in the detection and identification of toxic/combustible gases for personal safety and air pollution monitoring.  相似文献   

17.
18.
H Pei  J Li  M Lv  J Wang  J Gao  J Lu  Y Li  Q Huang  J Hu  C Fan 《Journal of the American Chemical Society》2012,134(33):13843-13849
In this work, we report a new concept of adaptive "ensemble aptamers" (ENSaptamers) that exploits the collective recognition abilities of a small set of rationally designed, nonspecific DNA sequences to identify molecular or cellular targets discriminatively. In contrast to in vitro-selected aptamers, which possess specific "lock-and-key" recognition, ENSaptamers rely on pattern recognition that mimics natural olfactory or gustatory systems. Nanographene oxide was employed to provide a low-background and highly reproducible fluorescent assay system. We demonstrate that this platform provides a highly discriminative and adaptive tool for high-precision identification of a wide range of targets for diagnostic and proteomic applications with a nearly unlimited supply of ENSaptamer receptors.  相似文献   

19.
A novel addressable electrode array based on paper was assembled on the crossing points of the row/column electrodes to form a 4 × 6 sensor array by a facile home-made device-holder, one paper layer contained the sensing sites, the other paper layer the printed counter electrode and reference electrode.  相似文献   

20.
Premkumar JR  Lev O  Marks RS  Polyak B  Rosen R  Belkin S 《Talanta》2001,55(5):1029-1038
Whole-cell luminescent bioreporter sensors based on immobilized recombinant Escherichia coli are described and evaluated. The sensors were prepared by glutaraldehyde-anchoring of nonspecific anti-E. coli antibodies on aminosylilated gold or silica glass surfaces with subsequent attachment of the probe bacteria. We demonstrate the generality of the concept by attachment of several E. coli strains that express luciferase in response to different physiological stress conditions including heat shock, DNA damage (SOS), fatty acid availability, peroxide and oxidative stress. The sensors can be used either as single- or multiple-use disposable sensing elements or for continuous operation. We show compatibility with optical fiber technology. Storage stability of the sensors exceeded 5 months with no measurable deterioration of the signal. Repeatability on exposure in successive days was <15%, as was sensor to sensor reproducibility. Sensitivity and detection limits of the immobilized cells were comparable to that of non-immobilized bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号