首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The mineral sanjuanite Al2(PO4)(SO4)(OH)·9H2O has been characterised by Raman spectroscopy complimented by infrared spectroscopy. The mineral is characterised by an intense Raman band at 984 cm(-1), assigned to the (PO4)3- ν1 symmetric stretching mode. A shoulder band at 1037 cm(-1) is attributed to the (SO4)2- ν1 symmetric stretching mode. Two Raman bands observed at 1102 and 1148 cm(-1) are assigned to (PO4)3- and (SO4)2- ν3 antisymmetric stretching modes. Multiple bands provide evidence for the reduction in symmetry of both anions. This concept is supported by the multiple sulphate and phosphate bending modes. Raman spectroscopy shows that there are more than one non-equivalent water molecules in the sanjuanite structure. There is evidence that structural disorder exists, shown by the complex set of overlapping bands in the Raman and infrared spectra. At least two types of water are identified with different hydrogen bond strengths. The involvement of water in the sanjuanite structure is essential for the mineral stability.  相似文献   

3.
纳米级β-Ni(OH)2掺杂Al(OH)3的电化学性能   总被引:1,自引:0,他引:1  
钠米粉体;纳米级β-Ni(OH)2掺杂Al(OH)3的电化学性能  相似文献   

4.
[Pt3S2(P(CH2OH)3)6](PF6)(OH)·H2O (1) is obtained by a reaction of [Pt3S2(P(CH2OH)3)6]Cl2 with NH4PF6. The crystal structure of 1 was determined by a single crystal X-ray diffraction analysis (space group R{ie638-1}c, a = 12.0042(2) Å, c = 52.6879(11) Å, V = 6575.2(2), Z = 6, C18H57F6O20P7Pt3S2, d x = 2.385 g/cm3, T = 150 K, R 1 = 0.044 for 2123 F 0 > 4δ(F) until 2θmax = 63°). The cations contain a {Pt33-S)2}2+ core with nonbonding Pt…Pt distances of 3.1536(6) Å. The Pt atoms are in a square planar environment; the Pt-S and Pt-P bond lengths are 2.3586(16) Å and 2.260(2) Å respectively.  相似文献   

5.
Summary The crystal structure of the hydrothermally synthesized compound Fe(SeO2OH) (SeO4) · H2O was determined by single crystal diffraction methods:a=8.355(2) Å,b=8.696(2) Å,c=9.255(2) Å, =93.72(1)°,V=670.95 Å3;Z=4, space group P21/c,R=0.029,R w=0.027 for 2430 independent reflections (sin /0.76 Å–1). Isolated FeO5(H2O)-octahedra share five corners with [SeO2OH] and [SeO4] groups to form sheets parallel to (100). These sheets are interconnected via hydrogen bonds only.
Die Kristallstruktur von Fe(SeO2OH)(SeO4)·H2O
Zusammenfassung Die Kristallstruktur der hydrothermal dargestellten Verbindung Fe(SeO2OH) (SeO4)·H2O wurde mittels Einkristallbeugungsmethoden bestimmt:a=8.355(2) Å,b=8.696(2) Å,c=9.255(2) Å, =93.72(1)°,V=670.95 Å3;Z=4, Raumgruppe P21/c,R=0.029,R w=0.027 für 2 430 unabhängige Reflexe (sin / 0.76 Å–1). Isolierte FeO5(H2O)-Oktaeder teilen fünf Ecken mit [SeO2OH]- und [SeO4]-Gruppen, wobei sie Schichten parallel (100) bilden. Diese Schichten sind nur über Wasserstoffbrücken miteinander verbunden.
  相似文献   

6.
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the ν4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the ν2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.  相似文献   

7.
β-Co(OH)2 and Mg(OH)2 nanoplates were synthesized via a facile template-free hydrothermal approach. The different conditions of preparation and catalytic properties of the products were studied and discussed. The products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, selected area electron diffraction(SAED), and gas chromatograph.  相似文献   

8.
掺杂Al的α-Ni(OH)2的电化学性能   总被引:3,自引:0,他引:3  
  相似文献   

9.
用化学共沉淀法合成了A l掺杂N i(OH)2,用XRD表征了合成样品的结构特征:研究了合成样品的循环伏安性能,以及用A l掺杂N i(OH)2为正极活性物质的Zn/N i试验电池的充放电性能。研究结果表明:所合成的A l掺杂N i(OH)2为具有α-型晶体结构的材料,A l掺杂N i(OH)2具有优良的电化学可逆性、良好的充放电性能和较好的电化学循环性能;A l掺杂N i(OH)2作为正极活性物质的Zn/N i试验电池等250次充放电循环容量保持率130.1%,最高放电比容量为420.5mAh/g。  相似文献   

10.
电极;掺杂Al的α-Ni(OH)2的电化学性能  相似文献   

11.
An X-ray crystallographic study is conducted of single crystals with the composition [Ba2(Aet?)2·10(H2O)]2+·2(Aet?)·4H2O, where Aet? = (C10H11N4O2S2)? is the ethazole (2-(para-aminobenzenesulfamido)-5-ethyl-1,3,4-tiadiazole) anion. The crystals are monoclinic; the space group is P21/c, Z = 2; a = 9.793(2) Å, b = 15.408(4) Å, and c = 22.553(6) Å; β = 94.98(2)°; and R = 0.047. The independent part of the compound’s structural formula, [Ba(Aet)(OH2)5](Aet)·2H2O, is isostructural with the analogous compound with the Sr atom. The ethazole anion is coordinated to the complexing metal atom by oxygen and nitrogen atoms to form a four-membered ring.  相似文献   

12.
《Solid State Sciences》2000,2(1):109-118
Y(OH)(SO4), Y(SO4)F, YNi(OH)3(SO4)-II and Y2Cu(OH)3(SO4)2F·H2O are obtained from hydrothermal reactions at 380°C under a pressure of 210 MPa. Their crystal structures were refined from single-crystal X-ray diffraction data. The four compounds have the following space groups and unit cells: Y(OH)(SO4), P21/n, a=7.9498(6), b=10.9530(9), c=8.1447(6) Å, β=93.764(1)°; Y(SO4)F, Pnma, a=8.3128(9), b=6.9255(7), c=6.3905(7) Å; YNi(OH)3(SO4)-II, Pnma, a=6.9695(8), b=7.2615(8), c=10.292(1) Å; Y2Cu(OH)3(SO4)2F·H2O, P21/n, a=11.6889(7), b=6.8660(4), c=12.5280(8) Å, β=97.092(1)°. The coordination environments of the yttrium atoms in the four structures vary from highly irregular 6+2, 6+3, 7+1 coordination polyhedra to relatively regular dodecahedra.  相似文献   

13.
The metastable phase 9Mg(OH)(2)·MgCl(2)·4H(2)O (9-1-4 phase) was found at the extended metastable isotherm of Mg(OH)(2) in the system MgO-MgCl(2)-H(2)O at 120 °C and occurs as intermediate binder phase during setting of magnesia cement due to temperature development of the setting reaction. The crystal structure of the 9-1-4 phase was solved from high resolution laboratory X-ray powder diffraction data in space group I2/m (C2/m) (a = 22.2832(3) ?, b = 3.13501(4) ?, c = 8.1316(2) ?, β = 97.753(1)°, V = 562.86(2) ?(3), and Z = 1). Structural and characteristical relations of the phases in the system MgO-MgCl(2)-H(2)O can be derived, with which the development of the cement or concrete qualities becomes explainable.  相似文献   

14.
Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu(3)(OH)(6)Cl(2). This geometrically frustrated kagome? antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagome? layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn(0.85)Cu(0.15))Cu(3)(OH)(6)Cl(2). The lack of Zn mixing onto the kagome? lattice sites lends support to the idea that the electronic ground state in ZnCu(3)(OH)(6)Cl(2) and its relatives is nontrivial.  相似文献   

15.
Dinuclear non-heme iron clusters containing oxo, hydroxo, or carboxylato bridges are found in a number of enzymes involved in O(2) metabolism such as methane monooxygenase, ribonucleotide reductase, and fatty acid desaturases. Efforts to model structural and/or functional features of the protein-bound clusters have prompted the preparation and study of complexes that contain Fe(micro-O(H))(2)Fe cores. Here we report the structures and spectroscopic properties of a family of diiron complexes with the same tetradentate N4 ligand in one ligand topology, namely [(alpha-BPMCN)(2)Fe(II)(2)(micro-OH)(2)](CF(3)SO(3))(2) (1), [(alpha-BPMCN)(2)Fe(II)Fe(III)(micro-OH)(2)](CF(3)SO(3))(3) (2), and [(alpha-BPMCN)(2)Fe(III)(2)(micro-O)(micro-OH)](CF(3)SO(3))(3) (3) (BPMCN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane). Stepwise one-electron oxidations of 1 to 2 and then to 3 demonstrate the versatility of the Fe(micro-O(H))(2)Fe diamond core to support a number of oxidation states with little structural rearrangement. Insight into the electronic structure of 1, 2', and 3 has been obtained from a detailed M?ssbauer investigation (2' differs from 2 in having a different complement of counterions). Mixed-valence complex 2' is ferromagnetically coupled, with J = -15 +/- 5 cm(-)(1) (H = JS(1).S(2)). For the S = (9)/(2) ground multiplet we have determined the zero-field splitting parameter, D(9/2) = -1.5 +/- 0.1 cm(-)(1), and the hyperfine parameters of the ferric and ferrous sites. For T < 12 K, the S = (9)/(2) multiplet has uncommon relaxation behavior. Thus, M(S) = -(9)/(2) <--> M(S) = +(9)/(2) ground state transition is slow while deltaM(S) = +/-1 transitions between equally signed M(S) levels are fast on the time scale of M?ssbauer spectroscopy. Below 100 K, complex 2' is trapped in the Fe(1)(III)Fe(2)(II) ground state; above this temperature, it exhibits thermally assisted electron hopping into the state Fe(1)(II)Fe(2)(III). The temperature dependence of the isomer shifts was corrected for second-order Doppler shift, obtained from the study of diferrous 1. The resultant true shifts were analyzed in a two-state hopping model. The diferric complex 3 is antiferromagnetically coupled with J = 90 +/- 15 cm(-)(1), estimated from a variable-temperature M?ssbauer analysis.  相似文献   

16.
Sipos P  Hefter G  May PM 《Talanta》2006,70(4):761-765
27Al NMR and Raman spectra of alkaline aluminate solutions with 0.005 M ≤ [Al(III)]T ≤ 3 M in various M′OH solutions (M′+ = Na+, K+ and Li+) were recorded and analysed. Caustic concentrations up to 20 M were used to explore whether higher aluminium hydroxo complexes are formed at extremely high concentrations of hydroxide. A single peak was observed on the 27Al NMR spectrum of each solution. The chemical shift of this peak shifts significantly upfield with increasing [M′OH]T in solutions with [Al(III)]T < 0.8 M. This variation shows a strong dependence on the cation of the solution and practically disappears in systems with [Al(III)]T ≥ 0.8 M. For Raman spectra of solutions with [Al(III)]T = 0.8 M and [NaOH]T ≥ 10 M, the peak maximum of the symmetric ν1-AlO4 stretching of Al(OH)4 shifted progressively from ∼620 to ∼625 cm−1 and decreased in intensity with increasing [NaOH]T. In parallel, modes centred at ∼720 and ∼555 cm−1 (cf. ∼705 and ∼535 cm−1 at lower [NaOH]T, ascribed to a dimeric aluminate species appeared, and their intensities increased with increasing [NaOH]T. These variations in the 27Al NMR and Raman spectra can be interpreted in terms of contact ion-pairs formed between the cation of the medium and the well-established Al(OH)4 or the dimeric aluminate species. Assumption of higher aluminium hydroxo complex species (e.g., Al(OH)63−) is not necessary to explain the spectroscopic effects observed.  相似文献   

17.
18.
Aluminum-cobalt co-substituted α-Ni(OH)2 was prepared by means of the titration method in a buffer solution, the structure was characterized by XRD analysis. With above mentioned α-Ni(OH)2 as the positive electrode of a nickel-metal hydride cell, the discharge performances were examined by constant-current charge-discharge experiments. In comparison with the electrodes made of aluminum substituted or cobalt substituted Ni(OH)2 materials, the aluminum-cobalt co-substituted composite electrodes possess an excellent electrochemical performance and are of practical significance.  相似文献   

19.
20.
Structural, magnetic, and powder and single-crystal electron paramagnetic resonance (EPR) studies were performed on [{Cu(bipy)(en)}{Cu(bipy)(H(2)O)}{VO(3)}(4)](n) (bipy = 2,2'-bipyridine, en = ethylenediamine), which is a new copper-vanadium hybrid organic-inorganic compound containing Cu(II) and V(V) centers. The oxovanadium units provide an anionic scaffolding to the structure, where two types of Cu(II) coordination modes, octahedral (Cu1) and square pyramidal (Cu2), contribute to the magnetic properties. The crystal structure contains layers including Cu1 and Cu2 ions, separated by stacked arrangements of 2,2'-bipyridine molecules. Each type of Cu(II) ion in these layers forms parallel spin chains described by exchange coupling parameters J(1) and J(2) for Cu1 and Cu2, respectively (exchange couplings defined as H(ex)(i,j) = -J(ij)S(i)S(j)), which, for necessity, are assumed to be equal to J. These chains are coupled by much weaker Cu1-Cu2 exchange interactions J(3) connecting neighbor Cu1 and Cu2 ions within a layer, through paths acting as rungs of a ladder chain structure. The average coupling J, which is antiferromagnetic (J < 0), according to the susceptibility data, is estimated with similar results with a mean field approximation (J = -1.4 cm(-1)), and with a uniform chain model (J = -1.7 cm(-1)). The EPR spectra of powdered samples and oriented single crystals are shown to be independent of J(1) and J(2), but are dependent on the weak coupling J(3), and the data allow a lower limit to be established: |J(3)| > 0.04 cm(-1). The spectra are also strongly sensitive to extremely weak coupling interactions with average magnitude J(4) between copper atoms in neighboring layers, separated by ~10 ?, using the stacked 2,2'-bipyridine molecules, which produce a 2D-to-3D quantum phase transition. This is observed in single-crystal samples when the energy levels are changed with the orientation of the magnetic field. From the characteristics of these transitions, we estimate a value of |J(4)| = 0.0034 ± 0.0004 cm(-1) between Cu(II) ions in neighboring layers. This work emphasizes the important possibilities of EPR to evaluate extremely small exchange couplings between metal ions in a solid material, even in the presence of other much larger couplings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号