首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoreactivity of 5-halouracil-containing DNA was investigated using 450 base pair DNA fragments under 302 nm irradiation. Heat-dependent cleavage selectively occurs at 5'-(G/C)AAXUXU-3' and 5'-(G/C)AXUXU-3' (X = Br, I) sequences in double-stranded DNA. HPLC product analysis indicated that 2'-deoxyribonolactone residues are effectively generated at these sequences. These observations will be useful in studying the molecular basis of the sequence-dependent DNA-damaging process in UV-irradiated 5-halouracil-containing DNA.  相似文献   

2.
Thymine glycol (Tg), 5,6-dihydroxy-5,6-dihydrothymine, is formed in DNA by the reaction of thymine with reactive oxygen species. The 5R Tg lesion was incorporated site-specifically into 5'-d(G(1)T(2)G(3)C(4)G(5)Tg(6)G(7)T(8)T(9)T(10)G(11)T(12))-3'; Tg = 5R Tg. The Tg-modified oligodeoxynucleotide was annealed with either 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)A(19)C(20)G(21)C(22)A(23)C(24))-3', forming the Tg(6) x A(19) base pair, corresponding to the oxidative damage of thymine in DNA, or 5'-d(A(13)C(14)A(15)A(16)A(17)C(18)G(19)C(20)G(21)C(22)A(23)C(24))-3', forming the mismatched Tg(6) x G(19) base pair, corresponding to the formation of Tg following oxidative damage and deamination of 5-methylcytosine in DNA. At 30 degrees C, the equilibrium ratio of cis-5R,6S:trans-5R,6R epimers was 7:3 for the duplex containing the Tg(6) x A (19) base pair. In contrast, for the duplex containing the Tg(6) x G(19) base pair, the cis-5R,6S:trans-5R,6R equilibrium favored the cis-5R,6S epimer; the level of the trans-5R,6R epimer remained below the level of detection by NMR. The data suggested that Tg disrupted hydrogen bonding interactions, either when placed opposite to A(19) or G(19). Thermodynamic measurements indicated a 13 degrees C reduction of T(m) regardless of whether Tg was placed opposite dG or dA in the complementary strand. Although both pairings increased the free energy of melting by 3 kcal/mol, the melting of the Tg x G pair was more enthalpically favored than was the melting of the Tg x A pair. The observation that the position of the equilibrium between the cis-5R,6S and trans-5R,6R thymine glycol epimers in duplex DNA was affected by the identity of the complementary base extends upon observations that this equilibrium modulates the base excision repair of Tg [Ocampo-Hafalla, M. T.; Altamirano, A.; Basu, A. K.; Chan, M. K.; Ocampo, J. E.; Cummings, A., Jr.; Boorstein, R. J.; Cunningham, R. P.; Teebor, G. W. DNA Repair (Amst) 2006, 5, 444-454].  相似文献   

3.
We report here the results of a comparative study of hairpin loops that differ in the connectivity of phosphodiester linkages (3',5'- versus 2',5'-linkages). In addition, we have studied the effect of changing the stem composition on the thermodynamic stability of hairpin loops. Specifically, we constructed hairpins containing one of six stem duplex combinations, i.e., DNA:DNA ("DD"), RNA:RNA ("RR"), DNA:RNA ("DR"), 2',5'-RNA:RNA ("RR"), 2',5'-RNA:DNA ("RD"), and 2',5'-RNA:2',5'-RNA ("RR"), and one of three tetraloop compositions, i.e., 2',5'-RNA ("R"), RNA ("R"), and DNA ("D"). All hairpins contained the conserved and well-studied loop sequence 5'-...C(UUCG)G...-3' [Cheong et al. Nature 1990, 346, 680-682]. We show that the 2',5'-linked loop C(UUCG)G, i.e.,...C(3'p5')U(2'p5')U(2'p5')C(2'p5')G(2'p5')G(3'p5')..., like its "normal" RNA counterpart, forms an unusually stable tetraloop structure. We also show that the stability imparted by 2',5'-RNA loops is dependent on base sequence, a property that is shared with the regioisomeric 3',5'-RNA loops. Remarkably, we find that the stability of the UUCG tetraloop is virtually independent of the hairpin stem composition (DD, RR, RR, etc.), whereas the native RNA tetraloop exerts extra stability only when the stem is duplex RNA (R:R). As a result, the relative stabilities of hairpins with a 2',5'-linked tetraloop, e.g. ggac(UUCG)gtcc (T(m) = 61.4 degrees C), are often superior to those with RNA tetraloops, e.g. ggac(UUCG)gtcc (T(m) = 54.6 degrees C). In fact, it has been possible to observe the formation of a 2',5'-RNA:DNA hybrid duplex by linking the hybrid's strands to a (UUCG) loop. These duplexes (RD), which are not stable enough to form in an intermolecular complex [Wasner et al. Biochemistry 1998, 37, 7478-7486], were stable at room temperature (T(m) approximately 50 degrees C). Thus, 2',5'-loops have potentially important implications in the study of nucleic acid complexes where structural data are not yet available. Furthermore, they may be particularly useful as structural motifs for synthetic ribozymes and nucleic acid "aptamers".  相似文献   

4.
The 5-position of pyrimidines in DNA duplexes offers a site for introducing alkynyl substituents that protrude into the major groove and thus do not sterically interfere with helix formation. Substituents introduced at the 5-position of the deoxyuridine residue of dU:dA base pairs may stabilize duplexes and reinforce helices weakened by a low G/C content, which would otherwise lead to false negative results in DNA chip experiments. Here we report on a method for preparing oligonucleotides with a 5-alkynyl substituent at a 2'-deoxyuridine residue by on-support Sonogashira coupling involving the fully assembled oligonucleotide. A total of 25 oligonucleotides with 5-alkynyl substituents were prepared. The substituents either decrease the UV melting point of the duplex with the complementary strand or increase it by up to 7.1 degrees C, compared with that of the unmodified control duplex. The most duplex-stabilizing substituent, a pyrenylbutyramidopropyne moiety, is likely to intercalate but does not prevent sequence-specific base pairing of the modified deoxyuridine residue or the neighboring nucleotides. It also increases the signal for a target strand when employed on a small oligonucleotide microarray. The ability to tune the melting point of a DNA dodecamer duplex with a single side chain over a temperature range of >11 degrees C may prove useful when developing DNA sequences for biomedical applications.  相似文献   

5.
We have recently shown that hairpins containing 2',5'-linked RNA loops exhibit superior thermodynamic stability compared to native hairpins comprised of 3',5'-RNA loops [Hannoush, R. N.; Damha, M. J. J. Am. Chem. Soc. 2001, 123, 12368-12374]. A remarkable feature of the 2',5'-r(UUCG) tetraloop is that, unlike the corresponding 3',5'-linked tetraloop, its stability is virtually independent of the hairpin stem composition. Here, we determine the solution structure of unusually stable hairpins of the sequence 5'-G(1)G(2)A(3)C(4)-(U(5)U(6)C(7)G(8))-G(9)(U/T(10))C(11)C(12)-3' containing a 2',5'-linked RNA (UUCG) loop and either an RNA or a DNA stem. The 2',5'-linked RNA loop adopts a new fold that is completely different from that previously observed for the native 3',5'-linked RNA loop. The 2',5'-RNA loop is stabilized by (a). U5.G8 wobble base pairing, with both nucleotide residues in the anti-conformation, (b). extensive base stacking, and (c). sugar-base and sugar-sugar contacts, all of which contribute to the extra stability of this hairpin structure. The U5:G8 base pair stacks on top of the C4:G9 loop-closing base pair and thus appears as a continuation of the stem. The loop uracil U6 base stacks above U5 base, while the cytosine C7 base protrudes out into the solvent and does not participate in any of the stabilizing interactions. The different sugar pucker and intrinsic bonding interactions within the 2',5'-linked ribonucleotides help explain the unusual stability and conformational properties displayed by 2',5'-RNA tetraloops. These findings are relevant for the design of more effective RNA-based aptamers, ribozymes, and antisense agents and identify the 2',5'-RNA loop as a novel structural motif.  相似文献   

6.
Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N(2)-dG adducts in DNA. When placed opposite dC in the 5'-CpG-3' sequence, the (6S,8R,11S) diastereomer forms a N(2)-dG:N(2)-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687-5700]. We refined its structure in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3'·5'-d(G(13)G(14)A(15)C(16)T(17)C(18)Y(19)C(20)T(21)A(22)G(23)C(24))-3' [X(7) is the dG adjacent to the C6 carbon of the cross-link or the α-carbon of the (6S,8R,11S) 1,N(2)-dG adduct, and Y(19) is the dG adjacent to the C8 carbon of the cross-link or the γ-carbon of the HNE-derived (6S,8R,11S) 1,N(2)-dG adduct; the cross-link is in the 5'-CpG-3' sequence]. Introduction of (13)C at the C8 carbon of the cross-link revealed one (13)C8→H8 correlation, indicating that the cross-link existed predominantly as a carbinolamine linkage. The H8 proton exhibited NOEs to Y(19) H1', C(20) H1', and C(20) H4', orienting it toward the complementary strand, consistent with the (6S,8R,11S) configuration. An NOE was also observed between the HNE H11 proton and Y(19) H1', orienting the former toward the complementary strand. Imine and pyrimidopurinone linkages were excluded by observation of the Y(19)N(2)H and X(7) N1H protons, respectively. A strong H8→H11 NOE and no (3)J((13)C→H) coupling for the (13)C8-O-C11-H11 eliminated the tetrahydrofuran species derived from the (6S,8R,11S) 1,N(2)-dG adduct. The (6S,8R,11S) carbinolamine linkage and the HNE side chain were located in the minor groove. The X(7)N(2) and Y(19)N(2) atoms were in the gauche conformation with respect to the linkage, maintaining Watson-Crick hydrogen bonds at the cross-linked base pairs. A solvated molecular dynamics simulation indicated that the anti conformation of the hydroxyl group with respect to C6 of the tether minimized steric interaction and predicted hydrogen bonds involving O8H with C(20)O(2) of the 5'-neighbor base pair G(5)·C(20) and O11H with C(18)O(2) of X(7)·C(18). These may, in part, explain the stability of this cross-link and the stereochemical preference for the (6S,8R,11S) configuration.  相似文献   

7.
We here report our studies on the conjugation of photoreactive Ru(2+) complex to oligonucleotides (ODNs), which give a stable duplex with the complementary target DNA strand. These functionalized DNA duplexes bearing photoreactive Ru(2+) complex can be specifically photolyzed to give the reactive aqua derivative, [Ru(tpy)(dppz)(H(2)O)](2+)-ODN (tpy = 2,2':6',2' '-terpyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine), in situ, which successfully cross-links to give photoproduct(s) in the duplex form with the target complementary DNA strand. Thus, the stable precursor of the aquaruthenium complex, the monofunctional polypyridyl ruthenium complex [Ru(tpy)(dppz)(CH(3)CN)](2+), has been site-specifically tethered to ODN, for the first time, by both solid-phase synthesis and postsynthetic modifications. (i) In the first approach, pure 3'-[Ru(tpy)(dppz)(CH(3)CN)](2+)-ODN conjugate has been obtained in 42% overall yield (from the monomer blocks) by the automated solid-phase synthesis on a support labeled with [Ru(tpy)(dppz)Cl](+) complex with subsequent liberation of the crude conjugate from the support under mild conditions and displacement of the Cl(-) ligand by acetonitrile in the coordination sphere of the Ru(2+) label. (ii) In the second approach, the single-modified (3'- or 5'- or middle-modified) or 3',5'-bis-modified Ru(2+)-ODN conjugates were prepared in 28-50% yield by an amide bond formation between an active ester of the metal complex and the ODNs conjugated with an amino linker. The pure conjugates were characterized unambiguously by ultraviolet-visible (UV-vis) absorption spectroscopy, enzymatic digestion followed by HPLC quantitation, polyacrylamide gel electrophoresis (PAGE), and mass spectrometry (MALDI-TOF as well as by ESI). [Ru(tpy)(dppz)(CH(3)CN)](2+)-ODNs form highly stabilized ODN.DNA duplexes compared to the unlabeled counterpart (DeltaT(m) varies from 8.4 to 23.6 degrees C) as a result of intercalation of the dppz moiety; they undergo clean and selective photodissociation of the CH(3)CN ligand to give the corresponding aqua complex, [Ru(tpy)(dppz)(H(2)O)](2+)-ODNs (in the aqueous medium), which is evidenced from the change of their UV-vis absorption properties and the detection of the naked Ru(2+)-ODN ions generated in the course of the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis. Thus, when [Ru(tpy)(dppz)(CH(3)CN)](2+)-ODN conjugate was hybridized to the complementary guanine (G)-rich target strand (T), and photolyzed in a buffer (pH 6.8), the corresponding aqua complex formed in situ immediately reacted with the G residue of the opposite strand, giving the cross-linked product. The highest yield (34%) of the photo cross-linked product obtained was with the ODN carrying two reactive Ru(2+) centers at both 3'- and 5'-ends. For ODNs carrying only one Ru(2+) complex, the yield of the cross-linked adduct in the corresponding duplex is found to decrease in the following order: 3'-Ru(2+)-ODN (22%) > 5'-Ru(2+)-ODN (9%) > middle-Ru(2+)-ODN (7%). It was also found that the photo cross-coupling efficiency of the tethered Ru(2+) complex with the target T strand decreased as the stabilization of the resulting duplex increased: 3'-Ru(2+)-ODN (VI.T) (DeltaT(m)(b) = 7 degrees C) < 5'-Ru(2+)-ODN (V.T) (DeltaT(m)(b) = 16 degrees C) < middle-Ru(2+)-ODN (VII.T) (DeltaT(m)(b) = 24.3 degrees C, Table 2). This shows that, with the rigidly packed structure, as in the duplex with middle-Ru(2+)-ODN, the metal center flexibility is considerably reduced, and consequently the accessibility of target G residue by the aquaruthunium moiety becomes severely restricted, which results in a poor yield in the cross-coupling reaction. The cross-linked product was characterized by PAGE, followed by MALDI-TOF MS.  相似文献   

8.
Heterocyclic aromatic amines (HAAs) generated during the cooking of meats are known to be genotoxic substances able to form covalent bonds with DNA bases after metabolic activation. This work aimed at the investigation of the influence of the local environment of nucleobases along the nucleotidic sequence on its modification induced by two different HAAs, namely 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), in order to identify possible sequences more susceptible to modification. A systematic study of the neighbouring base effect on the adduction was emphasized. Thus, PhIP and IQ adducts have been synthesized with various T-rich model single-strand oligonucleotides displaying different flanking bases (A, G, C or T) at the 3' or the 5' side of the targeted guanine, which allowed a comparison of the flanking base effects on adduction. Modified oligonucleotides were then analyzed by high-performance liquid chromatography (HPLC) coupled to electrospray ionization mass spectrometry. The localization of the modifications induced by PhIP or IQ along the oligonucleotide sequence was achieved by tandem mass spectrometry, and modification yields of the various model sequences were compared. Results indicate a favouring sequence context effect on the G-C8-IQ adduct formation with the sequence 5'GGG3'. Although higher than IQ, modification yields observed with PhIP showed a less obvious effect of the neighbouring base on the G-C8-PhIP adduct formation, with a preferential sequence 5'GGA/G/T3'.  相似文献   

9.
A universal, photochemically cleavable DNA base analogue would add desirable versatility to a number of methods in molecular biology. A novel C-nucleoside, nitropiperonyl deoxyriboside (NPdR, P), has been investigated for this purpose. NPdR can be converted to its 5'-DMTr-3'-CE-phosphoramidite and was incorporated into pentacosanucleotides by conventional synthesis techniques. The destabilizing effect on hybrid formation with a complementary strand when this P base opposes A, T, and G was found to be 3-5 kcal/mol, but 9 kcal/mol when it opposes C. Brief irradiation (lambda > 360 nm, 20 min) of DNA containing the P base and piperidine treatment causes strand cleavage giving the 3'- and 5'-phosphates. Two significant recent interests, universal/non-hydrogen-bonding base analogues and photochemical backbone cleavage, have thus been combined in a single molecule that serves as a light-based DNA scissors.  相似文献   

10.
BACKGROUND: Mitomycin C (MC), a DNA cross-linking and alkylating agent, targets guanines in the m5CpG sequence with 2-3-fold preference over guanines in unmethylated CpG. Benzo[a]pyrenediolepoxide (BPDE) and several other aromatic carcinogens form guanine adducts with an identical selectivity for m5CpG, and in certain cancers G to T transversion mutation 'hotspots' in the p53 tumor suppressor gene are more frequent at this sequence than at guanines in other sequences. MC appears suitable to probe the general mechanism of this selectivity. RESULTS: A 162-bp DNA fragment containing C, m5C or f5C (5-fluoro cytosine) at all cytosine positions was cross-linked by MC at guanines in CpG steps. The extent of cross-linking increased in the order f5C < C < m5C. Monoalkylation or cross-linking of duplex 12-mer oligonucleotides containing a single CpG, f5CpG or m5CpG step gave yields of adducts that increased in the same order. The rates showed a correlation with the Hammett sigma constant of the methyl and fluoro substituents of the cytosine. Only the base-pair cytosine substituent influenced reactivity of guanine. CONCLUSIONS: The 2-amino group of guanine in the m5CpG sequence of DNA has a greater nucleophilic reactivity with mitomycin than CpG. Evidence is presented for a novel mechanism: transmission of the electron-donating effect of the 5-methyl substituent of the cytosine to guanine through H-bonding of the m5C.G base pair. The results explain the enhanced reaction of BPDE at m5CpG in DNA and the origin of G-T mutational hotspots in the p53 gene in cancer.  相似文献   

11.
The diastereospecific chemical syntheses of uridine-2',3',4',5',5' '-(2)H(5) (21a), adenosine-2',3',4',5',5' '-(2)H(5) (21b), cytidine-2',3',4',5',5' '-(2)H(5)(2)H(5) (21c), and guanosine-2',3',4',5',5' '-(2)H(5) (21d) (>97 atom % (2)H at C2', C3', C4', and C5'/C5' ') have been achieved for their use in the solution NMR structure determination of oligo-RNA by the Uppsala "NMR-window" concept (refs 4a-c, 5a, 6), in which a small (1)H segment is NMR-visible, while the rest is made NMR-invisible by incorporation of the deuterated blocks 21a-d. The deuterated ribonucleosides 21a-d have been prepared by the condensation of appropriately protected aglycone with 1-O-acetyl-2,3,5-tri-O-(4-toluoyl)-alpha/beta-D-ribofuranose-2,3,4,5,5'-(2)H(5) (19), which has been obtained via diastereospecific deuterium incorporation at the C2 center of appropriate D-ribose-(2)H(4) derivatives either through an oxidation-reduction-inversion sequence or a one-step deuterium-proton exchange in high overall yield (44% and 24%, respectively).  相似文献   

12.
A heptamer composed of C5-(1-propynyl) pyrimidines (Y(p)'s) is a potent and specific antisense agent against the mRNA of SV40 large T antigen (Wagner, R. W.; Matteucci, M. D.; Grant, D.; Huang, T.; Froehler, B. C. Nat. Biotechnol. 1996, 14, 840-844). To characterize the role of the propynyl groups in molecular recognition, thermodynamic increments associated with substitutions in DNA:RNA duplexes, such as 5'-dCCUCCUU-3':3'-rGAGGAGGAAAU-5', have been measured by UV melting experiments. For nucleotides tested, an unpaired dangling end stabilizes unmodified and propynylated duplexes similarly, except that addition of a 5' unpaired rA is 1.4 kcal/mol more stabilizing on the propynylated, PODN:RNA, duplex than on the DNA:RNA duplex. Free energy increments for addition of single propynyl groups range from 0 to -4.0 kcal/mol, depending on the final number and locations of substitutions. A preliminary model for predicting the stabilities of Y(p)-containing hybrid duplexes is presented. Eliminating one amino group, and therefore a hydrogen bond, by substituting inosine (I) for guanosine (G), to give 5'-dC(p)C(p)U(p)C(p)C(p)U(p)U(p)-3':3'-rGAGIAGGAAAU-5', destabilizes the duplex by 3.9 kcal/mol, compared to 1.7 kcal/mol for the same change within the unpropynylated duplex. This 2.2 kcal/mol difference is eliminated by removing a single propynyl group three base pairs away. CD spectra suggest that single propynyl deletions within the PODN:RNA duplex have position-dependent effects on helix geometry. The results suggest long-range cooperativity between propynyl groups and provide insights for rationally programming oligonucleotides with enhanced binding and specificity. This can be exploited in developing technologies that are dependent upon nucleic acid-based molecular recognition.  相似文献   

13.
We describe the synthesis and the incorporation into oligonucleotides of the novel nucleoside building blocks 9, 10 , and 16 , carrying purine‐like double H‐bond‐acceptor bases. These base‐modified nucleosides were conceived to recognize selectively a cytosine⋅guanine (C⋅G) inversion site within a homopurine⋅homopyrimidine DNA duplex, when constituent of a DNA third strand designed to bind in the parallel binding motif. While building block 16 turned out to be incompatible with standard oligonucleotide‐synthesis conditions, UV/triplex melting experiments with third‐strand 15‐mers containing β‐D ‐nucleoside 6 (from 9 ) showed that recognition of the four natural Watson‐Crick base pairs follows the order G⋅C≈C⋅G>A⋅T>T⋅A. The recognition is sequence‐context sensitive, and G⋅C or C⋅G recognition does not involve protonated species of β‐D ‐nucleoside 6 . The data obtained fit (but do not prove) a structural model for C⋅G recognition via one conventional and one C−H⋅⋅⋅O H‐bond. The unexpected G⋅C recognition is best explained by third‐strand base intercalation. A comparison of the triplex binding properties of these new bases with those of 4‐deoxothymine (5‐methylpyrimidine‐2(1H)‐one, 4 HT), previously shown to be C⋅G selective but energetically weak, is also described.  相似文献   

14.
BACKGROUND: 5-Bromodeoxyuridine is a radiosensitizing agent that is currently being evaluated in clinical trials as an adjuvant in the treatment of a variety of cancers. gamma-Radiolysis and UV irradiation of oligonucleotides containing 5-bromodeoxyuridine result in the formation of direct strand breaks at the 5'-adjacent nucleotide by oxidation of the respective deoxyribose. We investigated the effects of DNA secondary structure and O2 on the induction of direct strand breaks in 5-bromodeoxyuridine-containing oligonucleotides. RESULTS: The efficiency of direct strand break formation in duplex DNA is dependent upon O2 and results in fragments containing 3'-phosphate and the labile 3'-ketodeoxyadenosine termini. The ratio of the 3'-termini is also dependent upon O2 and structure. Deuterium product isotope effects and tritium-transfer studies indicate that hydrogen-atom abstraction from the C1'- and C2'-positions occurs in an O2- and structure-dependent manner. CONCLUSIONS: The reaction mechanisms by which DNA containing 5-bromodeoxyuridine is sensitized to damage by UV irradiation are dependent upon whether the substrate is hybridized and upon the presence or absence of O2. Oxygen reduces the efficiency of direct strand break formation in duplex DNA, but does not affect the overall strand damage. It is proposed that the sigma radical abstracts hydrogen atoms from the C1'- and C2'-positions of the 5'-adjacent deoxyribose moiety, whereas the nucleobase peroxyl radical selectively abstracts the C1'-hydrogen atom from this site. This is the second example of DNA damage amplification by a nucleobase peroxyl radical, and might be indicative of a general reaction pattern for this family of reactive intermediates.  相似文献   

15.
(L)-alpha-Threofuranosyl-(3'-->2')-oligonucleotides (TNA) containing vicinally connected phosphodiester linkages undergo informational base pairing in an antiparallel strand orientation and are capable of cross-pairing with RNA and DNA. TNA is derived from a sugar containing only four carbon atoms and is one of the simplest potentially natural nucleic acid alternatives investigated thus far in the context of a chemical etiology of nucleic acid structure. Compared to DNA and RNA that contain six covalent bonds per repeating nucleotide unit, TNA contains only five. We have determined the atomic-resolution crystal structure of the B-form DNA duplex [d(CGCGAA)Td(TCGCG)](2) containing a single (L)-alpha-threofuranosyl thymine (T) per strand. In the modified duplex base stacking interactions are practically unchanged relative to the reference DNA structure. The orientations of the backbone at the TNA incorporation sites are slightly altered in order to accommodate fewer atoms and covalent bonds. The conformation of the threose is C4'-exo with the 2'- and 3'-substituents assuming quasi-diaxial orientation.  相似文献   

16.
In previous work, we have shown that photoexcitation of guanine cation radical (G*+) in frozen aqueous solutions of DNA and its model compounds at 143 K results in the formation of neutral sugar radicals with substantial yield. In this report, we present electron spin resonance (ESR) and theoretical (DFT) evidence regarding the formation of sugar radicals after photoexcitation of guanine cation radical (G*+) in frozen aqueous solutions of one-electron-oxidized RNA model compounds (nucleosides, nucleotides and oligomers) at 143 K. Specific sugar radicals C5'*, C3'* and C1'* were identified employing derivatives of Guo deuterated at specific sites in the sugar moiety, namely, C1'-, C2'-, C3'- and C5'-. These results suggest C2'* is not formed upon photoexcitation of G*+ in one-electron-oxidized Guo and deuterated Guo derivatives. Phosphate substitution at C5'- (i.e., in 5-GMP) hinders formation of C5'* via photoexcitation at 143 K but not at 77 K. For the RNA-oligomers studied, we observe on photoexcitation of oligomer-G*+ the formation of mainly C1'* and an unidentified radical with a ca. 28 G doublet. The hyperfine coupling constants of each of the possible sugar radicals were calculated employing the DFT B3LYP/6-31G* approach for comparison to experiment. This work shows that formation of specific neutral sugar radicals occurs via photoexcitation of guanine cation radical (G*+) in RNA systems but not by photoexcitation of its N1 deprotonated species (G(-H)*). Thus, our mechanism regarding neutral sugar formation via photoexcitation of base cation radicals in DNA appears to be valid for RNA systems as well.  相似文献   

17.
This paper focuses on DNA-binding interactions exhibited by Pt(dma-T)CN(+), where dma-T denotes 4'-dimethylamino-2,2':6',2'-terpyridine, and includes complementary studies of the corresponding pyrr-T complex, where pyrr-T denotes 4'-(N-pyrrolidinyl)-2,2':6',2'-terpyridine. The chromophores are useful for understanding the interesting and rather intricate DNA-binding interactions exhibited by these and related systems. One reason is that the terpyridine ligands employed provide intense visible absorption and enhanced photoluminescence signals. Incorporating cyanide as a coligand further aids analysis by suppressing covalent binding. Physical methods utilized include X-ray crystallography for structures of the individual inorganic complexes. Viscometry as well as spectral studies of the absorbance, emission, and circular dichroism (CD) yield information about interactions with a variety of DNA hosts. Although there is no sign of covalent binding under the conditions used, most hosts exhibit two phases of uptake. Under conditions of high loading (low base-pair-to-platinum ratios), the dma-T complex preferentially binds externally and aggregates on the surface of the host, except for the comparatively rigid host [poly(dG-dC)]2. Characteristic signs of the aggregated form include a bisignate CD signal in the charge-transfer region of the spectrum and strongly bathochromically shifted emission. When excess DNA is present, however, the complex shifts to intercalative binding, preferentially next to G[triple bond]C base pairs if available. Once the complex internalizes into DNA it becomes virtually immune to quenching by O2 or solvent, and the emission lifetime extends to 11 micros when [poly(dI-dC)]2 is the host. On the other hand, the host itself becomes a potent quenching agent when G[triple bond]C base pairs are present because of the reducing strength of guanine residues.  相似文献   

18.
To explore the structure-dependent hydrogen abstraction in antiparallel and parallel G-quartet DNA structures, the photochemical reactivity of 5-iodouracil ((I)U)-containing human telomeric DNA 22-mers was investigated under the 302 nm UV irradiation conditions. We discovered that only antiparallel ODN 4, in which the second T residue in the diagonal loop of the antiparallel G-quartet is substituted with (I)U, was rapidly consumed as compared with parallel ODN 4 and the other (I)U-containing 22-mers under the irradiation conditions. Product analysis of the photolyzate of antiparallel ODN 4 indicated that a 2'-deoxyribonolactone residue was effectively produced at the 5' side of the (I)U residue in the diagonal loop. Photochemical 2'-deoxyribonolactone formation was also found in the (I)U-containing diagonal loop of antiparallel G-quartets d(GGGGTTT(I)UGGGG)(2) and d(GGGGTT(I)UTGGGG)(2), whereas the reaction did not occur at other DNA structures, including the single-stranded form, the loop region of the hairpin, and linear four-stranded G-quartets. The results clearly indicate that this type of 2'-deoxyribonolactone formation efficiently occurrs only in the diagonal loop of the antiparallel G-quartet. Furthermore, we found that 2'-deoxyribonolactone was formed at the (I)U-containing G-rich sequence of the IgG switch regions and the 5' termini of the Rb gene, suggesting the formation of an antiparallel G-quartet with a diagonal loop in these sequences. These results suggest that the present photochemical method can be used as a specific probe for the antiparallel G-quartet with the diagonal loop.  相似文献   

19.
A dimeric neomycin-neomycin conjugate 3 with a flexible linker, 2,2'-(ethylenedioxy)bis(ethylamine), has been synthesized and characterized. Dimer 3 can selectively bind to AT-rich DNA duplexes with high affinity. Biophysical studies have been performed between 3 and different nucleic acids with varying base composition and conformation by using ITC (isothermal calorimetry), CD (circular dichroism), FID (fluorescent intercalator displacement), and UV (ultraviolet) thermal denaturation experiments. A few conclusions can be drawn from this study: (1) FID assay with 3 and polynucleotides demonstrates the preference of 3 toward AT-rich sequences over GC-rich sequences. (2) FID assay and UV thermal denaturation experiments show that 3 has a higher affinity for the poly(dA)·poly(dT) DNA duplex than for the poly(dA)·2poly(dT) DNA triplex. Contrary to neomycin, 3 destabilizes poly(dA)·2poly(dT) triplex but stabilizes poly(dA)·poly(dT) duplex, suggesting the major groove as the binding site. (3) UV thermal denaturation studies and ITC experiments show that 3 stabilizes continuous AT-tract DNA better than DNA duplexes with alternating AT bases. (4) CD and FID titration studies show a DNA binding site size of 10-12 base pairs/drug, depending upon the structure/sequence of the duplex for AT-rich DNA duplexes. (5) FID and ITC titration between 3 and an intramolecular DNA duplex [d(5'-A(12)-x-T(12)-3'), x = hexaethylene glycol linker] results in a binding stoichiometry of 1:1 with a binding constant ~10(8) M(-1) at 100 mM KCl. (6) FID assay using 3 and 512 hairpin DNA sequences that vary in their AT base content and placement also show a higher binding selectivity of 3 toward continuous AT-rich than toward DNA duplexes with alternate AT base pairs. (7) Salt-dependent studies indicate the formation of three ion pairs during binding of the DNA duplex d[5'-A(12)-x-T(12)-3'] and 3. (8) ITC-derived binding constants between 3 and DNA duplexes have the following order: AT continuous, d[5'-G(3)A(5)T(5)C(3)-3'] > AT alternate, d[5'-G(3)(AT)(5)C(3)-3'] > GC-rich d[5'-A(3)G(5)C(5)T(3)-3']. (9) 3 binds to the AT-tract-containing DNA duplex (B* DNA, d[5'-G(3)A(5)T(5)C(3)-3']) with 1 order of magnitude higher affinity than to a DNA duplex with alternating AT base pairs (B DNA, d[5'-G(3)(AT)(5)C(3)-3']) and with almost 3 orders of magnitude higher affinity than a GC-rich DNA (A-form, d[5'-A(3)G(5)C(5)T(3)-3']).  相似文献   

20.
The 1-propynylation at C5 of consecutive pyrimidines in DNA can enhance DNA:RNA hybrid stability at 37 degrees C by over 1 kcal/mol of substitution [Barnes, T. W., III; Turner, D. H. J. Am. Chem. Soc.2001, 123, 4107-4118]. To provide information on the structural consequences of propynylation, two-dimensional NMR spectroscopy was used to study the structures of several oligonucleotides. Intraresidue nuclear Overhauser effect spectroscopy cross peaks were observed at 30 degrees C and a 200 ms mixing time in the H6-H1' region for 5'(dC(P)C(P)U(P)C(P)C(P)U(P)U(P)) (ssPrODN) but not for 5'(dCCUCCUU) (ssODN), suggesting preorganization of the propynylated single strand. NMR structures of the duplexes 5'(dC(P)C(P)U(P)C(P)C(P)U(P)U(P))3':3'(rGAGGAGGAAAU)5' (PrODN:RNA), 5'(dCC(P)U(P)C(P)C(P)U(P)U(P))3':3'(rGAGGAGGAAAU)5' (sPrODN1:RNA), and 5'(dCCUCCUU)3':3'(rGAGGAGGAAAU)5' (ODN:RNA) indicate that their global structures are almost identical. The NMR data, however, suggest that the 5'-end of sPrODN1:RNA is more dynamic than that of PrODN:RNA. In the propynylated duplexes, the propyne group stacks on the aromatic ring of the 5'-base and extends into the major groove. The results suggest that the increased stability of the propynylated duplexes is caused by preorganization of the propynylated single strand and different interactions in the double strand. The propynyl group provides volume exclusion, enhanced stacking, and possibly different solvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号