首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid state mechanical activation method was applied for surface modification of LiMn2O4 by Li-M-O (M = Co, Co+Ni) and for preparation of composite mixed LiMn2O4/LiCoO2 cathode materials. Pristine LiMn2O4 was ground with correspondent precursors (for coating) or with LiCoO2 (for composites) in high-energy planetary mills and then heat treated at different temperatures. As prepared materials were studied by XRD, 7Li MAS NMR spectroscopy, XPS, SEM and electrochemical cycling. It has been shown that both ‘core-shell’ and composite materials prepared by mechanochemical process are characterized by superior electrochemical performance due to smaller particles and chemical modification of LiMn2O4.  相似文献   

2.
Combining two methods, coating and doping, to modify spinel LiMn2O4, is a novel approach we used to synthesize active material. First we coated the LiMn2O4 particles with the nickel oxide particles by means of homogenous precipitation, and then the nickel oxide-coated LiMn2O4 was calcined at 750 °C to form a LiNixMn2−xO4 shell on the surface of spinel LiMn2O4 particles. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), cyclic voltammetry (CV) and charge-discharge test were performed to characterize the spinel LiMn2O4 before and after modification. The experimental results indicated that a spinel LiMn2O4 core is surrounded by a LiNixMn2−xO4 shell. The resulting composite showed excellent electrochemical cycling performance with an average fading rate of 0.014% per cycle. This improved cycle stability is greatly attributed to the suppression of Jahn-Teller distortion on the surface of spinel LiMn2O4 particles during cycling.  相似文献   

3.
Jaephil Cho   《Solid State Ionics》2003,160(3-4):241-245
Micron-sized LiMn2O4 particles were easily coated on LiCoO2 cathodes using an amphoteric gelatin surfactant at pH4–5. The coated LiCoO2 material showed a significantly higher thermal stability during charging and capacity retention on cycling at 4.6 V, compared to the bare LiCoO2.  相似文献   

4.
Two kinds of spinel LiMn2O4 thin film for lithium ion micro-batteries were successfully prepared on polycrystal Pt substrates by spin coating methods, which were carried out under ultrasonic irradiation (USG) and magnetic stirring (MSG), respectively. The microstructures and electrochemical performance of LiMn2O4 thin films were characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge-discharge measurements. It was found that the crystalline structure of USG samples grew better than that of the MSG samples. At the same time, higher discharge capacity and better cycle stability were obtained for the LiMn2O4 thin films of USG at the current density of 50 μAh/cm2 between 3.0 and 4.3 V. The 1st discharge capacity was 57.8 μAh/cm2-μm for USG thin films and 51.7 μAh/cm2-μm for MSG thin films. After 50 cycles, 91.4% and 69% of discharge capacity could be retained respectively, indicating that ultrasonic irradiation condition during spin coating was more suitable for preparing spinel LiMn2O4 thin films with better electrode performance for lithium ion micro-batteries.  相似文献   

5.
To improve the electrochemical performance of an all-solid-state In/80Li2S⋅20P2S5 (electrolyte)/LiMn2O4 cell, a lithium-titanate thin film was used to coat LiMn2O4. The interfacial resistance between LiMn2O4 and the electrolyte (measured after initial charging) decreased when the LiMn2O4 particles were coated with lithium-titanate. A cell with lithium-titanate-coated LiMn2O4 had a higher capacity than a cell with noncoated LiMn2O4 for current densities in the range 0.064 to 2.6 mA cm− 2. Additionally, a cell with coated LiMn2O4 retained 96% of the 10th-cycle reversible capacity at a current density of 0.064 mA cm− 2 after 50 cycles.  相似文献   

6.
The preparation and characterization of the spinel LiMn2O4 obtained by solid state reaction from quasi-amorphous -MnO2 is reported. A well-defined highly pure spinel was characterized from X-ray diffractograms. The average manganese valence of -MnO2 and spinel samples was found to be 3.89±0.01 and 3.59±0.01, respectively. The electrochemical performance of the spinel was evaluated through cyclic voltammetry and chronopotentiometry. The voltammetric profiles obtained at 1 mV/s for the LiMn2O4 electrode in 1 M LiClO4 dissolved in a 2:1 mixture of ethylene carbonate and dimethyl carbonate showed typical peaks for the lithium insertion/extraction reactions. The charge capacity of this electrode was found to be 110 mA h g−1 for the first charge/discharge cycles.  相似文献   

7.
高潭华  刘慧英  张鹏  吴顺情  杨勇  朱梓忠 《物理学报》2012,61(18):187306-187306
采用基于密度泛函理论的第一性原理方法, 在广义梯度近似(GGA)和GGA+U方法下对尖晶石型LiMn2O4及其Al掺杂 的尖晶石型LiAl0.125Mn1.875O4晶体的结构和电子性质进行了计算. 结果表明: 采用GGA方法得到尖晶石型LiMn2O4是立方晶系结构, 其中的Mn离子为+3.5价, 无法解释它的Jahn-Teller 畸变. 给出的LiMn2O4能带结构特征也与实验结果不符. 而采用GGA+U方法得到在低温下的LiMn2O4和其掺杂 体系LiAl0.125Mn1.875O4的晶体都是正交结构, 与实验一致. 也能明确地确定Mn的两种价态Mn3+/Mn4+的分布并且能够说明Mn3+O6z方向有明显的Jahn-Teller 畸变, 而Mn4+O6则没有畸变. LiMn2O4的能带结构与实验比较也能够符合. 采用GGA+U方法对Al掺杂体系的LiAl0.125Mn1.875O4的研究表明, 用Al替换一个Mn不会明显地改变晶体的电子性质, 但可以有效地消除Al3+O6 八面体的Jahn-Teller畸变, 从而改善正极材料LiMn2O4的性能, 这与电化学实验的观察结果相一致.  相似文献   

8.
Caie Lai  Wenyi Ye  Huiyong Liu  Wenji Wang 《Ionics》2009,15(3):389-392
The TiO2-coated LiMn2O4 has been prepared by a carrier transfer method and investigated. This novel synthetic method involved the transfer of TiO2 into the surface of LiMn2O4 with Vulcan XC-72 active carbon powders as a dispersant. The X-ray diffraction shows that spinel structure of materials does not change after the coating of TiO2. The electrochemical performance tests show that the initial discharge capacity of TiO2-modified LiMn2O4 is 111.5 mA h g−1, which is better than that of pristine LiMn2O4 (103.8 mA h g−1). The cyclic performance is significantly improved after surface modification. The TiO2-modified LiMn2O4 by a carrier transfer method exhibits better discharge capability and lower resistance.  相似文献   

9.
采用sol-gel法在Pt/TiO2/SiO2/p-Si(100)衬底上制备了Bi3.25La0.75Ti3O12(BLT)铁电薄膜,研究了在750 ℃时不同退火气压(pO2:10-4—3 atm)对薄膜微观结构和电学性能的影响.XRD和拉曼光谱结果表明在10-4和3 atm氧气压下退火 关键词: 3.25La0.75Ti3O12')" href="#">Bi3.25La0.75Ti3O12 铁电性能 sol-gel法 正交化度  相似文献   

10.
Here are reported for the first time electrochemical data on all-solid-state lithium microbatteries using crystalline sputtered V2O5 thin films as cathode materials and LiPON as solid electrolyte. The stable specific capacity of 30 µAh/cm2 found with a 2.4 µm thick film competes very well with the best values obtained for solid state microbatteries using amorphous films. With the challenge of decreasing the temperature of heat treatment for sputtered LiCoO2 thin films, we show that a temperature of 500 °C combined with an optimized bias sputtering (-50 V) allows to get highly crystalline deposits, to minimize the presence of Co3O4 and to suppress any trace of the cubic phase. At the same time the theoretical specific capacity is reached in the 4.2 V-3 V range and a good cycling behaviour is achieved with a high capacity of 50 µAh/cm2/µm after 140 cycles at 10 µA.cm2.  相似文献   

11.
Binary Al2O3/SiO2-coated rutile TiO2 composites were prepared by a liquid-phase deposition method starting from Na2SiO3·9H2O and NaAlO2. The chemical structure and morphology of binary Al2O3/SiO2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al2O3/SiO2 coating layers both in amorphous phase were formed at TiO2 surfaces. The silica coating layers were anchored at TiO2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO2-coated TiO2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al2O3/SiO2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al2O3/SiO2-coated TiO2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al2O3/SiO2-coated TiO2 composites were higher than those of the naked rutile TiO2 and the SiO2-coated TiO2 samples. The relative light scattering index was found to depend on the composition of coating layers.  相似文献   

12.
The present study used the Pechini process with a heat treatment to synthesize LiMn2O4 powder (LMO). After surface coating, a nano-sized oxidative film of Li-Ni-Mn formed on the surface of the LMO-Ni powders. The concentration of Mn3+ for the LMO-Ni powder was lower and the average electrovalence of Mn exceeded the theoretical value, resulting in the initial capacity of the LMO-Ni powder being lower than the LMO powder. However, the LMO-Ni powder with the Li/Ni film not only restrained Mn ions from dissolving into the electrolyte, but also improved the charge-discharge cycling capacity.  相似文献   

13.
We describe the structural properties and electrical characteristics of thin thulium oxide (Tm2O3) and thulium titanium oxide (Tm2Ti2O7) as gate dielectrics deposited on silicon substrates through reactive sputtering. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy, measurements. It is found that the Tm2Ti2O7 film annealed at 800 °C exhibited a thinner capacitance equivalent thickness of 19.8 Å, a lower interface trap density of 8.37 × 1011 eV−1 cm−2, and a smaller hysteresis voltage of ∼4 mV than the other conditions. We attribute this behavior to the Ti incorporated into the Tm2O3 film improving the interfacial layer and the surface roughness. This film also shows negligible degrees of charge trapping at high electric field stress.  相似文献   

14.
LiMn2O4/graphite batteries using AlF3-coated LiMn2O4 have been fabricated and their electrochemical performance including discharge capacity and cyclic and storage performances have been tested and compared with pristine LiMn2O4/graphite batteries. The LiMn2O4/graphite battery with AlF3-coated LiMn2O4 shows better capacity (108.5 mAhg?1), cyclic performance (capacity retention of 92.7 % after 70 cycles), and capacity recovery ratio (98.6 %) than the pristine LiMn2O4 battery. X-ray diffraction patterns shows that the spinel structure of AlF3-coated LiMn2O4 can be controlled better than that of pristine LiMn2O4 after storage. The improvement in electrochemical performance of the AlF3-coated LiMn2O4/graphite battery is due to the fact that AlF3 acts as a stabilizer and can protect the oxide structure from damaging during storage, leading to a smaller resistance and polarization after storage.  相似文献   

15.
A precursor of TiO2–LiCo1/3Ni1/3Mn1/3O2 was prepared by electrostatic self-assembly method. The final product was obtained by heating the precursor at 400–450 °C for 4–6 h in air. X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical tests were used to examine the structural, morphology, elementary valence, and electrochemical characteristics. XRD indicated that the TiO2-coated material can be indexed by α-NaFeO2 layered structure, which belongs to hexagonal-type space group R3m. XPS results confirmed the existence of TiO2 compound on the surface of the coated sample. The SEM image showed that the material had spherically porous morphology with the uniform size about 6 μm. The initial charge–discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 material was 168.8/160.0 mAh/g. After 60 cycles, the discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 sample was 147.0 mAh/g, and the coulombic efficiency was 94.0%. Compared with the uncoated sample, the electrochemical performance of TiO2-coated LiCo1/3Ni1/3Mn1/3O2 was improved.  相似文献   

16.
ZnGa2O4:Cr3+ thin films with bright red emission were synthesized using a sol-gel process, characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and UV-vis and fluorescence spectrophotometry measurements. Effects of calcining temperature, film thickness, calcining duration and substrates on the crystal structure and photoluminescent property have been investigated. It is found that the crystallinity, Ga/Zn ratio and band gap energy (Eg) are significant factors influencing optical characteristics, while the nature of substrates affect the surface morphologies of ZnGa2O4:Cr3+ thin films.  相似文献   

17.
Spinel LiMn2O4 active material with high capacity retention   总被引:1,自引:0,他引:1  
Xifei Li 《Applied Surface Science》2007,253(21):8592-8596
Heating the mixture of LiMn2O4 and NiO at 650 °C was employed to enhance the cyclability of spinel LiMn2O4. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy analyses implied that a LiNixMn2−xO4 solid solution was formed on the surface of LiMn2O4 particles. And charge-discharge tests showed that the enhancement of the capacity retention of modified LiMn2O4 is significant, maintained 97.2% of the maximum capacity after 100 cycles at charge and discharge rate of C/2, while the pure one only 75.2%. The modified LiMn2O4 also results in a distinct improvement in rate capability, even at the rate of 12C. The improvement of electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion at the surface of spinel LiMn2O4 particles.  相似文献   

18.
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we designed an efficient Co3O4 electrocatalyst using a pyrolysis strategy for oxygen evolution reaction (OER). Morphological characterization confirmed the ultra-thin structure of nanosheet. Further, the existence of oxygen vacancies was obviously evidenced by the X-ray photoelectron spectroscopy and electron spin resonance spectroscopy. The increased surface area of Co3O4 ensures more exposed sites, whereas generated oxygen vacancies on Co3O4 surface create more active defects. The two scenarios were beneficial for accelerating the OER across the interface between the anode and electrolyte. As expected, the optimized Co3O4 nanosheets can catalyze the OER efficiently with a low overpotential of 310 mV at current density of 10 mA/cm2 and remarkable long-term stability in 1.0 mol/L KOH.  相似文献   

19.
Spinel LiMn2O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials were successfully synthesized by the citric-acid-assisted sol-gel method with ultrasonic irradiation stirring. The structure and electrochemical performance of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometer, cyclic voltamogram (CV) and the galvanostatic charge-discharge test in detail. XRD shows that all the samples have high phase purity, and the powders are well crystallized. SEM exhibits that LiMn1.4Cr0.2Ni0.4O4 has more uniform cubic-structure morphology than that of LiMn2O4. EDX reveals that a small amount of Mn3+ still exists in LiMn1.4Cr0.2Ni0.4O4. The galvanostatic charge-discharge test indicates that the initial discharge capacities for the LiMn1.4Cr0.2Ni0.4O4 and LiMn2O4 at 0.15 C discharge rates are 130.8 and 130.2 mAh g−1, respectively. After 50 cycles, their capacity are 94.1% and 85.1%, respectively. The CV curve implies that Ni and Cr dual substitutions are beneficial to the reversible intercalation and deintercalation of Li+, and suppress Mn3+ generation at high temperatures and provide improved structural stability.  相似文献   

20.
Surface morphology in 3.5 × 3.5 μm2 area of spinel LiMn2O4, which is a typical cathode material for Li ion secondary batteries, is studied using an atomic force microscopy (AFM) with a conductive probe. Negative bias voltage is applied to the probe to attract Li+ ions toward LiMn2O4 surface during the AFM observation. Before applying the voltage (0 V), the whole LiMn2O4 surface is covered with scale-shaped grains. Under the negative voltage of 5.5 V, electric current abruptly increases, indicating Li+ ionic conduction. Simultaneously, part of the scale-shaped grains expand and flatten. Jahn-Teller phase transition, which is induced by the repulsive interaction between the Mn-eg and O-2p electrons in Li accumulated layer, is proposed as a possible origin of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号