首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We calculate the tunnel current between two parallel two-dimensional electron systems in a strong perpendicular magnetic field. We model the strongly correlated electron systems by Wigner crystals, and describe their low-energy dynamics in terms of magnetophonons. The effects of the magnetophonons on the tunneling processes can be described by an exactly solvable independent-boson model. A tunneling electron shakes up magnetophonons, which results in a conductance peak that is displaced away from zero voltage and broadened compared with the case of no magnetic field. At low temperatures and low enough voltages the tunneling conductance is strongly suppressed, and the I–V characteristics exhibit a power-law behavior. The zero-voltage conductance is thermally activated with an activation temperature 10 K. The results are in very good agreement with experiment.  相似文献   

2.
We theoretically investigate the effects of strain-induced pseudomagnetic fields on the transmission probability and the ballistic conductance for Dirac fermion transport in suspended graphene. We show that resonant tunneling through double magnetic barriers can be tuned by strain in the suspended region. The valley-resolved transmission peaks are apparently distinguishable owing to the sharpness of the resonant tunneling. With the specific strain, the resonant tunneling is completely suppressed for Dirac fermions occupying the one valley, but the resonant tunneling exists for the other valley. The valley-filtering effect is expected to be measurable by strain engineering. The proposed system can be used to fabricate a graphene valley filter with the large valley polarization almost 100%.  相似文献   

3.
We study magnetic field modulated transport properties of Dirac fermions in graphene, where Dirac fermions penetrate through a velocity barrier. We find strong wave vector filtering and resonant effect. The angular-dependent region of resonant tunneling is suppressed by tuning velocity barriers. We can also found that the confined states in this velocity barrier can be changed by the magnetic field. Various novel devices, such as wavevector filter and magnetic switches, may be constructed based on our observed phenomena.  相似文献   

4.
Spin filter tunneling is considered in the low bias limit as functions of the temperature dependent barrier parameters. We demonstrate the generation of spin polarized tunneling currents in relation to the magnetic order parameter, and discuss how an interfacially suppressed order parameter leads to a temperature dependent tunneling current asymmetry. Analyzing the full parameter space reveals that the often overlooked barrier thickness plays a critical role in spin filter tunneling. With all else fixed, thicker barriers yield higher spin polarization, and allow a given polarization to be achieved at higher temperatures. This insight may open the door for new materials to serve as spin filter barriers.  相似文献   

5.
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS.  相似文献   

6.
Bo Chang 《Physics letters. A》2010,374(29):2985-2938
We report a theoretical analysis of electron transport through a quantum dot with an embedded biaxial single-molecule magnet (SMM) based on mapping of the many-body interaction-system onto a one-body problem by means of the non-equilibrium Green function technique. It is found that the conducting current exhibits a stepwise behavior and the nonlinear differential conductance displays additional peaks with variation of the sweeping speed and the magnitude of magnetic field. This observation can be interpreted by the interaction of electron-spin with the SMM and the quantum tunneling of magnetization. The inelastic conductance and the corresponding tunneling processes are investigated with normal as well as ferromagnetic electrodes. In the case of ferromagnetic configuration, the coupling to the SMM leads to an asymmetric tunneling magnetoresistance (TMR), which can be enhanced or suppressed greatly in certain regions. Moreover, a sudden TMR-switch with the variation of magnetic field is observed, which is seen to be caused by the inelastic tunneling.  相似文献   

7.
《Current Applied Physics》2018,18(4):384-387
We report the occurrence of the zero-bias conductance peak (ZBCP) in an InAs nanowire coupled to PbIn superconductors with varying temperature, bias voltage, and magnetic field. The ZBCP is suppressed with increasing temperature and bias voltage above the Thouless energy of the nanowire. Applying a magnetic field also diminishes the ZBCP when the resultant magnetic flux reaches the magnetic flux quantum h/2e. Our observations are consistent with theoretical expectations of reflectionless tunneling, in which the phase coherence between an electron and its Andreev-reflected hole induces the ZBCP as long as time-reversal symmetry is preserved.  相似文献   

8.
李春雷  郭永  王小明  律原 《中国物理 B》2017,26(2):27301-027301
We have investigated the photon-assisted shot noise properties in the magnetic field tunable heterostructures. Transport properties of the model structure are strongly dependent on the oscillatory field and the magnetic field. In this structure,electrons can absorb or emit one or multi-photons to reach the quasi-bound state. As a result, the transmission properties are affected considerably by photon-assisted tunneling and these features cause the nontrivial variations in the shot noise and Fano factor. It is found that the shot noise becomes spin-dependent and can be modulated not only by the magnetic field, but also by the oscillatory field. Both the spin-up and spin-down components of the shot noise can be greatly suppressed by the magnetic field, and can also be drastically enhanced by the harmonically driven field. Furthermore,with increasing external magnetic field, it is important to note that the enhanced intensity is decreased, even suppressed.These results suggest another method to suppress the shot noise via modulating the oscillatory field at a diluted-magneticsemiconductors/semiconductor structure.  相似文献   

9.
We use frequency-dependent capacitance–voltage spectroscopy to study the dynamic charging of self-assembled InAs quantum dots. With increasing frequency, the AC charging becomes suppressed, beginning with the low-energy states. By applying an in-plane magnetic field, we generate an additional magnetic confinement that alters the tunneling barrier and hence the charging dynamics. In traveling through the potential barrier, the electrons acquire an additional momentum k0, proportional to the magnetic field B. As the tunneling is enhanced, when k0 matches the maximum of the electronic wave function Ψ (in momentum representation), we are able to map out the shape of Ψ by varying B.  相似文献   

10.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

11.
The observed tunneling magnetoresistance (TMR) effect in La0.9Ba0.1MnO3 (LBMO)/Nb-doped SrTiO3 (Nb-STO) p+-n junctions is investigated and a possible mechanism responsible for the TMR generation is proposed by taking into account the dynamic spin accumulation and paramagnetic magnetization in the Nb-STO layer. Because of carrier diffusion across the dynamic domain boundaries in the Nb-STO layer and spin disordering in the LBMO layer, the tunneling resistance through the junction is high at zero magnetic field. The spin disordering is suppressed upon applying a non-zero magnetic field, which results in the spin-polarized tunneling in this ferromagnetic/depletion layer/dynamic ferromagnetic sandwiched structure and thus the observed TMR effect. The dependence of the TMR effect on the domain size in the LBMO layer, the tunneling current and temperature as well is explained, qualitatively consistent with the experimental observation.  相似文献   

12.
We have studied the Ho3+ spin dynamics for LiY0.998Ho0.002F4 via the positive muon (mu+) transverse field depolarization rate lambdaTF as a function of temperature and magnetic field. We find sharp minima in lambdaTF(H) at fields for which the Ho3+ ion system has field-induced (avoided) level crossings. The reduction scales with calculated level repulsions, suggesting that mu+ depolarization by slow fluctuations of nonresonant Ho3+ spin states is partly suppressed when resonant tunneling opens new fluctuation channels at frequencies much greater than the muon precession frequency.  相似文献   

13.
林鑫  王海龙  潘晖  许怀哲 《中国物理 B》2011,20(4):47302-047302
The energy band structure of single-layer graphene under one-dimensional electric and magnetic field modulation is theoretically investigated. The criterion for bandgap opening at the Dirac point is analytically derived with a two-fold degeneracy second-order perturbation method. It is shown that a direct or an indirect bandgap semiconductor could be realized in a single-layer graphene under some specific configurations of the electric and magnetic field arrangement. Due to the bandgap generated in the single-layer graphene,the Klein tunneling observed in pristine graphene is completely suppressed.  相似文献   

14.
We show experimentally and by numerical simulations that spin waves propagating in a magnetic film can pass through a region of a magnetic field inhomogeneity or they can be reflected by the region depending on the sign of the inhomogeneity. If the reflecting region is narrow enough, spin-wave tunneling takes place. We investigate the tunneling mechanism and demonstrate that it has a magnetic dipole origin.  相似文献   

15.
We have observed tunneling suppression and photon-assisted tunneling of Bose-Einstein condensates in an optical lattice subjected to a constant force plus a sinusoidal shaking. For a sufficiently large constant force, the ground energy levels of the lattice are shifted out of resonance and tunneling is suppressed; when the shaking is switched on, the levels are coupled by low-frequency photons and tunneling resumes. Our results agree well with theoretical predictions and demonstrate the usefulness of optical lattices for studying solid-state phenomena.  相似文献   

16.
We adopt the group velocity approach to the issue of tunneling time in two configurations of magnetic barrier structures, which are arranged with identical or unidentical building blocks. The effects of an external electric field are also taken into account. The tunneling time in magnetic barrier structures is found to be strongly dependent on the magnetic configuration, the applied bias, the incident energy as well as the longitudinal wave vector. The results indicate that for electrons with equal energy but different incident angles, the tunneling processes are significantly separated in time within the same magnetic barrier structure. In the configuration arranged with unidentical building blocks, there exists obvious asymmetry of tunneling time in two opposite tunneling directions. Such a discrepancy of the tunneling time varies distinctly with the longitudinal wave vector and the applied bias. Received 4 March 2002 / Received in final form 22 May 2002 Published online 17 September 2002  相似文献   

17.
Recently it was discovered that, in contrast to expectations, the low-temperature dielectric properties of some multicomponent glasses depend strongly on magnetic fields. The low-temperature dielectric response of these materials is governed by atomic tunneling systems. We now have investigated the influence of magnetic fields on the coherent properties of atomic tunneling states in a crystalline host in two-pulse echo experiments. As in glasses, we observe a very strong magnetic field dependence of the echo amplitude. Moreover, for the first time we have direct evidence that the magnetic fields change the phase of coherent tunneling systems.  相似文献   

18.
The authors investigate the spin-resolved transport through an asymmetrical magnetic graphene superlattice (MGS) consisting of the periodic barriers with abnormal one in height. To quantitatively depict the asymmetrical MGS, an asymmetry factor has been introduced to measure the height change of the abnormal barrier. It is shown that the spin filter effect is strongly enhanced by the barrier asymmetry both in the Klein and the classical tunneling regimes. In the presence of abnormal barrier, the conductance with certain spin direction is suppressed with respect to different tunneling regimes, and thus high spin polarization with opposite sign can be achieved.  相似文献   

19.
We study the coherent quantum tunneling of magnetization, for example, in a biaxial molecular magnet with dissipation of the environment which results in the suppression of the tunneling and therefore the decoherence of superposition of macroscopic quantum states in terms of the general spin-boson model. The degree of entanglement between the magnet and the environment is evaluated explicitly with the help of reduced density matrix. We show an interesting relation that the degree of entanglement approaches maximum value when the coherent tunneling is suppressed completely.  相似文献   

20.
Quantum spin tunneling and Kondo effect are two very different quantum phenomena that produce the same effect on quantized spins, namely, the quenching of their magnetization. However, the nature of this quenching is very different so that quantum spin tunneling and Kondo effect compete with each other. Importantly, both quantum spin tunneling and Kondo effect produce very characteristic features in the spectral function that can be measured by means of single spin scanning tunneling spectroscopy and allows to probe the crossover from one regime to the other. We model this crossover, and the resulting changes in transport, using a non-perturbative treatment of a generalized Anderson model including magnetic anisotropy that leads to quantum spin tunneling. We predict that, at zero magnetic field, integer spins can feature a split-Kondo peak driven by quantum spin tunneling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号