首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Das O  Paria S  Zangrando E  Paine TK 《Inorganic chemistry》2011,50(22):11375-11383
The mononuclear copper(II) complex [Cu(H(2)L(1))(2)(H(2)O)](ClO(4))(2) (1) (where H(2)L(1) = 1,10-phenanthroline-5,6-dioxime) reacts with copper(II) perchlorate in acetonitrile at ambient conditions in the presence of triethylamine to afford a copper(II) complex, [Cu(L(3))(2)(H(2)O)](ClO(4))(2) (2a), of 1,10-phenanthroline furoxan. A similar complex [Cu(L(3))(2)Cl](ClO(4)) (2) is isolated from the reaction of H(2)L(1) with copper(II) chloride, triethylamine, and sodium perchlorate in acetonitrile. The two-electron oxidation of the vic-dioxime to furoxan is confirmed from the X-ray single crystal structure of 2. An intermediate species, showing an absorption band at 608 nm, is observed at -20 °C during the conversion of 1 to 2a. A similar blue intermediate is formed during the reaction of [Cu(HDMG)(2)] (H(2)DMG = dimethylglyoxime) with ceric ammonium nitrate, but H(2)DMG treated with ceric ammonium nitrate does not form any intermediate. This suggests the involvement of a copper(II) complex in the intermediate step. The intermediate species is also observed during the two-electron oxidation of other vic-dioximes. On the basis of the spectroscopic evidence and the nature of the final products, the intermediate is proposed to be a mononuclear copper(II) complex ligated by a vic-dioxime and a dinitrosoalkene. The dinitrosoalkene is generated upon two-electron oxidation of the dioxime. The transient blue color of the dioxime-copper(II)-dinitrosoalkene complex may be attributed to the ligand-to-ligand charge transfer transition. The intermediate species slowly decays to the corresponding two-electron oxidized form of vic-dioxime, i.e. furoxan and [Cu(CH(3)CN)(4)](ClO(4)). The formation of two isomeric furoxans derived from the reaction of an asymmetric vic-dioxime, hexane-2,3-dioxime, and copper(II) perchlorate supports the involvement of a dinitrosoalkene species in the intermediate step. In addition, the oxidation of 2,9-dimethyl-1,10-phenanthroline-5,6-dioxime (H(2)L(2)) to the corresponding furoxan and subsequent formation of a copper(I) complex [Cu(L(4))(2)](ClO(4)) (3) (where L(4) = 2,9-dimethyl-1,10-phenanthroline furoxan) are discussed.  相似文献   

2.
Photolysis of the ternary system consisting of diethyldithiocarbamate (Et2dtc), diethyldiselenocarbamate (Et2dsc) and copper(II) (1:1:1) has been studied in isobutylmethylketone (IBMK), toluene, chloromethane and chloromethane/ROH solutions (chloromethane = CCl4, CHCl3 or CH2Cl2 and ROH = EtOH or i-PrOH). The results obtained by EPR techniques and UV-Vis data indicate that a homolytic Cu-S bond cleavage involving the dithiocarbamate (dtc) ligand appears as the primary photo-process in Cu(Et2dtc)(Et2dsc) photolysis. Further conversion of the primary photoproduct Cu(I)(Et2dsc) is discussed in terms of a specific interaction with the solvent. In chloromethanes and chloromethane/ROH Cu(I)(Et2dsc) is oxidised by the solvent to give the corresponding paramagnetic mixed-ligand Cu(II)(Et2dsc)Cl complex and/or its chloride-bridged and EPR silent dimer Cu2(Et2dsc)2Cl2. The formation of the monomeric species occurs through a co-ordination of the alcohol molecule in the xy plane of the complex. Because of its co-ordination inertness, toluene poorly stabilises the primary photoproduct Cu(I)(Et2dsc), thus providing an effective primary recombination process and lower efficiency of Cu(Et2dtc)(Et2dsc) photolysis. The formation of the bis-solvated mixed-ligand complex Cu(II)(Et2dsc)+ in IBMK is also discussed.  相似文献   

3.
Several Cu(II) complexes with ACC (=1-aminocyclopropane carboxylic acid) or AIB (=aminoisobutyric acid) were prepared using 2,2'-bipyridine, 1,10-phenanthroline, and 2-picolylamine ligands: [Cu(2,2'-bipyridine)(ACC)(H2O)](ClO4) (1a), [Cu(1,10-phenanthroline)(ACC)](ClO4) (2a), [Cu(2-picolylamine)(ACC)](ClO4) (3a), and [Cu(2,2'-bipyridine)(AIB)(H2O)](ClO4) (1b). All of the complexes were characterized by X-ray diffraction analysis. The Cu(II)-ACC complexes are able to convert the bound ACC moiety into ethylene in the presence of hydrogen peroxide, in an "ACC-oxidase-like" activity. A few equivalents of base are necessary to deprotonate H2O2 for optimum activity. The presence of dioxygen lowers the yield of ACC conversion into ethylene by the copper(II) complexes. During the course of the reaction of Cu(II)-ACC complexes with H2O2, brown species (EPR silent and lambda max approximately 435 nm) were detected and characterized as being the Cu(I)-ACC complexes that are obtained upon reduction of the corresponding Cu(II) complexes by the deprotonated form of hydrogen peroxide. The geometry of the Cu(I) species was optimized by DFT calculations that reveal a change from square-planar to tetrahedral geometry upon reduction of the copper ion, in accordance with the observed nonreversibility of the redox process. In situ prepared Cu(I)-ACC complexes were also reacted with hydrogen peroxide, and a high level of ethylene formation was obtained. We propose Cu(I)-OOH as a possible active species for the conversion of ACC into ethylene, the structure of which was examined by DFT calculation.  相似文献   

4.
We present theoretical studies based on first-principles density functional theory calculations for the possible gas-phase mechanism of the atomic layer deposition (ALD) of copper by transmetalation from common precursors such as Cu(acac)(2), Cu(hfac)(2), Cu(PyrIm(R))(2) with R = (i)Pr and Et, Cu(dmap)(2), and CuCl(2) where diethylzinc acts as the reducing agent. An effect on the geometry and reactivity of the precursors due to differences in electronegativity, steric hindrance, and conjugation present in the ligands was observed. Three reaction types, namely, disproportionation, ligand exchange, and reductive elimination, were considered that together comprise the mechanism for the formation of copper in its metallic state starting from the precursors. A parallel pathway for the formation of zinc in its metallic form was also considered. The model Cu(I) molecule Cu(2)L(2) was studied, as Cu(I) intermediates at the surface play an important role in copper deposition. Through our study, we found that accumulation of an LZnEt intermediate results in zinc contamination by the formation of either Zn(2)L(2) or metallic zinc. Ligand exchange between Cu(II) and Zn(II) should proceed through a Cu(I) intermediate, as otherwise, it would lead to a stable copper molecule rather than copper metal. Volatile ZnL(2) favors the ALD reaction, as it carries the reaction forward.  相似文献   

5.
The absolute magnitude of an "entatic" (constrained) state effect has never been quantitatively demonstrated. In the current study, we have examined the electron-transfer kinetics for five closely related copper(II/I) complexes formed with all possible diastereomers of [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane) in which both ethylene bridges have been replaced by cis- or trans-1,2-cyclohexane. The crystal structures of all five Cu(II) complexes and a representative Cu(I) complex have been established by X-ray diffraction. For each complex, the cross-reaction rate constants have been determined with six different oxidants and reductants in aqueous solution at 25 degrees C, mu = 0.10 M. The value of the electron self-exchange rate constant (k(11)) has then been calculated from each cross reaction rate constant using the Marcus cross relation. All five Cu(II/I) systems show evidence of a dual-pathway square scheme mechanism for which the two individual k(11) values have been evaluated. In combination with similar values previously determined for the parent complex, Cu(II/I)([14]aneS(4)), and corresponding complexes with the two related monocyclohexanediyl derivatives, we now have evaluated a total of 16 self-exchange rate constants which span nearly 6 orders of magnitude for these 8 closely related Cu(II/I) systems. Application of the stability constants for the formation of the corresponding 16 metastable intermediates--as previously determined by rapid-scan cyclic voltammetry--makes it possible to calculate the specific electron self-exchange rate constants representing the reaction of each of the strained intermediate species exchanging electrons with their stable redox partners--the first time that calculations of this type have been possible. All but three of these 16 specific self-exchange rate constants fall within--or very close to--the range of 10(5)-10(6) M(-1) s(-1), values which are characteristic of the most labile Cu(II/I) systems previously reported, including the blue copper proteins. The results of the current investigation provide the first unequivocal demonstration of the efficacy of the entatic state concept as applied to Cu(II/I) systems.  相似文献   

6.
The reaction of p-substituted benzyl halides ((Y)BnX; X = Cl, Br, and I; Y = p-substituent, OMe, t-Bu, Me, H, F, Cl, and NO(2)) and copper(I) complexes supported by a series of (2-pyridyl)alkylamine ligands has been investigated to shed light on the mechanism of copper(I) complex mediated carbon-halogen bond activation, including ligand effects on the redox reactivity of copper(I) complexes which are relevant to the chemistry. For both the tridentate ligand (Phe)L(Pym2) [N,N-bis(2-pyridylmethyl)-2-phenylethylamine] and tetradentate ligand TMPA [tris(2-pyridylmethyl)amine] complexes, the C-C coupling reaction of benzyl halides proceeded smoothly to give corresponding 1,2-diphenylethane derivatives and copper(II)-halide complex products. Kinetic analysis revealed that the reaction obeys second-order kinetics both on the copper complex and the substrate; rate = k[Cu](2)[(Y)BnX](2). A reaction mechanism involving a dinuclear copper(III)-halide organometallic intermediate is proposed, on the basis of the kinetic results, including observed electronic effects of p-substituents (Hammett plot) and the rate dependence on the BDE (bond dissociation energy) of the C-X bond, as well as the ligand effects.  相似文献   

7.
Hydrogen atom abstraction reactions have been implicated in oxygenation reactions catalyzed by copper monooxygenases such as peptidylglycine alpha-hydroxylating monooxygenase (PHM) and dopamine beta-monooxygenase (DbetaM). We have investigated mononuclear copper(I) and copper(II) complexes with bis[(6-neopentylamino-2-pyridyl)methyl][(2-pyridyl)methyl]amine (BNPA) as functional models for these enzymes. The reaction of [Cu(II)(bnpa)]2+ with H2O2, affords a quasi-stable mononuclear copper(II)-hydroperoxo complex, [Cu(II)(bnpa)(OOH)]+ (4) which is stabilized by hydrophobic interactions and hydrogen bonds in the vicinity of the copper(II) ion. On the other hand, the reaction of [Cu(I)(bnpa)]+ (1) with O2 generates a trans-mu-1,2-peroxo dicopper(II) complex [Cu(II)2(bnpa)2(O2(2-]2+ (2). Interestingly, the same reactions carried out in the presence of exogenous substrates such as TEMPO-H, produce a mononuclear copper(II)-hydroperoxo complex 4. Under these conditions, the H-atom abstraction reaction proceeds via the mononuclear copper(II)-superoxo intermediate [Cu(II)(bnpa)(O2-)]+ (3), as confirmed from indirect observations using a spin trap reagent. Reactions with several substrates having different bond dissociation energies (BDE) indicate that, under our experimental conditions the H-atom abstraction reaction proceeds for substrates with a weak X-H bond (BDE < 72.6 kcal mol(-1)). These investigations indicate that the copper(II)-hydroperoxo complex is a useful tool for elucidation of H-atom abstraction reaction mechanisms for exogenous substrates. The useful functionality of the complex has been achieved via careful control of experimental conditions and the choice of appropriate ligands for the complex.  相似文献   

8.
The electrochemical reduction of Cu(II) bis(thiosemicarbazone) complexes [Cu(II)(btsc)] is accompanied by protonation to give an unstable Cu(I) intermediate [Cu(btscH(2))](+). The nature of this intermediate was probed by reaction of bis(thiosemicarbazone) ligands with a Cu(I) precursor which gave a novel helical dimeric dicationic complex. The dependence of these reactions on the ligand backbone substituents is discussed together with their possible relevance to the use of Cu(II) bis(thiosemicarbazone) ligands as hypoxic selective imaging and therapeutic agents.  相似文献   

9.
The electron-transfer kinetics for each of three copper(II/I) tripodal ligand complexes reacting with multiple reducing and oxidizing counter reagents have been examined in aqueous solution at 25 degrees C, mu = 0.10 M. For all of the ligands studied, an amine nitrogen serves as the bridgehead atom. Two of the ligands (PMMEA and PEMEA) contain two thioether sulfurs and one pyridyl nitrogen as donor atoms on the appended legs while the third ligand (BPEMEA) has two pyridyl nitrogens and one thioether sulfur. Very limited kinetic studies were also conducted on two additional closely related tripodal ligand complexes. The results are compared to our previous kinetic study on a Cu(II/I) system involving a tripodal ligand (TMMEA) with thioether sulfur donor atoms on all three legs. In all systems, the Cu(II/I) electron self-exchange rate constants (k(11)) are surprisingly small, ranging approximately 0.03-50 M(-)(1) s(-)(1). The results are consistent with earlier studies reported by Yandell involving the reduction of Cu(II) complexes with four similar tripodal ligand systems, and it is concluded that the dominant reaction pathway involves a metastable Cu(II)L intermediate species (designated as pathway B). Since crystal structures suggest that the ligand reorganization accompanying electron transfer is relatively small compared to our earlier studies on macrocyclic ligand complexes of Cu(II/I), it is unclear why the k(11) values for the tripodal ligand systems are of such small magnitude.  相似文献   

10.
The syntheses and structural details of tetraisopropoxyaluminates and tetra-tert-butoxyaluminates of nickel(II), copper(I), and copper(II) are reported. Within the nickel series, either Ni[Al(OiPr)4]2.2HOiPr, with nickel(II) in a distorted octahedral oxygen environment, or Ni[Al(OiPr)4]2.py, with nickel(II) in a square-pyramidal O4N coordination sphere, or Ni[(iPrO)(tBuO)3Al]2, with Ni(II) in a quasi-tetrahedral oxygen coordination, has been obtained. Another isolated complex is Ni[(iPrO)3AlOAl(OiPr)3].3py (with nickel(II) being sixfold-coordinated), which may also be described as a "NiO" species trapped by two Al(OiPr)3 Lewis acid-base systems stabilized at nickel by three pyridine donors. Copper(I) compounds have been isolated in three forms: [(iPrO)4Al]Cu.2py, [(tBuO)4Al]Cu.2py, and Cu2[(tBuO)4Al]2. In all of these compounds, the aluminate moiety behaves as a bidentate unit, creating a tetrahedrally distorted N2O2 copper environment in the pyridine adducts. In the base-free copper(I) tert-butoxyaluminate, a dicopper dumbbell [Cu-Cu 2.687(1) A] is present with two oxygen contacts on each of the copper atoms. Copper(II) alkoxyaluminates have been characterized either as Cu[(tBuO)4Al]2, {Cu(iPrO)[(iPrO)4Al]}2, and Cu[(tBuO)3(iPrO)Al]2 (copper being tetracoordinated by oxygen) or as [(iPrO)4Al]2Cu.py (pentacoordinated copper similar to the nickel derivative). Finally, a copper(II) hydroxyaluminate has been isolated, displaying pentacoordinate copper (O4N coordination sphere) by dimerization, with the formula {[(tBuO)4Al]Cu(OH).py}2. The formation of all of these isolated products is not always straightforward because some of these compounds in solution are subject to decomposition or are involved in equilibria. Besides NMR [copper(I) compounds], UV absorptions and magnetic moments are used to characterize the compounds.  相似文献   

11.
The formation of considerable amounts of hydrogen peroxide upon the slow addition of various oxidizing agents to oxalic acid in dilute sulphuric acid in the presence of oxygen and Mn(II) is greatly retarded in the presence of Fe(III) or Cu(II). With hydrogen peroxide as oxidizing agent and a trace of Fe(II) there is considerable decomposition of peroxide, under a nitrogen atmosphere, after a few hours at 25 degrees in light (from a tungsten lamp), and less decomposition in the dark. This decomposition is decreased by Mn(II) and also when the original mixture contains Fe(III). With oxygen as the oxidizing agent Fe(II) is about 100 times as effective an inhibitor of peroxide formation as Fe(III). With all oxidizing agents used, Cu(II) is some 6-10 times more effective as a retarder than Fe(III). The inhibition is accounted for by the reaction Fe(III) [or Cu(II)] + CO(-)(2) --> Fe(II) [or Cu(I)] + CO(2).  相似文献   

12.
Johar GS 《Talanta》1974,21(9):970-972
New and very simple spot tests are described for the detection of Bi(III), Cu(II) and I(-) ions with limits of detection of 3, 8, and 75 mug/0.05 ml respectively. Tests are also described for such combinations as Bi(III) + I(-); Bi(III) + Cu(II); and Bi(III) + Cu(II) + I(-). All the tests are based on the formation of an orange or red-orange precipitate of bismuth(III)-copper(I)-iodide-thiourea complex, for which the formula [Bi(tu)(3)I(3).Cu(tu)(3)I] (where tu = thiourea) is proposed. This complex is produced in various ways by the interaction of Bi(III), Cu(II), and I(-) ions with thiourea. Most cations and anions do not interfere, but Tl(I), Cs(I), SO(2-)(3), S(2)O(2-)(3), EDTA, and oxidizing ions such as NO(-)(2), IO(-)(3), IO(-)(4), BrO(-)(3), and MnO(-)(4) do. The complex hexakis(thioureato)sulphatomonoaquodicopper(I) [Cu(2)(tu)(6)SO(4).H(2)O] is proposed as a new spot-test reagent for Bi(III) and I(-) ions, although the sensitivity for the latter is poor.  相似文献   

13.
The equilibrium distribution of species formed between Cu(II) and N-acetylneuraminic (sialic) acid (I, LH) at 298 K has been determined using a two-dimensional (2D) simulation analysis of electron paramagnetic resonance (EPR) spectra. In acidic solutions (pH values < 4), the major species present are Cu(2+), [CuL]+ [logbeta = 1.64(4)], and [CuL2] [logbeta = 2.77(5)]. At intermediate pH values (4.0 < pH < 7.5), [CuL2H-1]- [logbeta = -2.72(7)] and two isomers of [CuLH-1] [logbeta (overall) = -3.37(2)] are present. At alkaline pH values (7.5 < pH < 11), the major species present is [CuL2H-2]2-, modeled as three isomers with unique giso and Aiso values [logbeta (overall) = -8.68(3)]. Two further species ([CuLH-3]2- and [CuL2H-3]3-) appear at pH values > 11. It is proposed that [CuL]+ most likely features I coordinated via the deprotonated carboxylic acid group (O1) and the endocyclic oxygen atom (OR) forming a five-membered chelate ring. Select Cu(II)-I species of the form [CuLH-1] may feature I acting as a dianionic tridentate chelate, via oxygen atoms derived from O1, OR, and one deprotonated hydroxy group (O7 or O8) from the glycerol tail. Alternatively, I may coordinate Cu(II) in a bidentate fashion as the tert-2-hydroxycarboxylato (O1,O2) dianion. Spectra predicted for Cu(II)-I complexes in which I is coordinated in either a O1,OR {I1-} or O1,O2 {I2-} bidentate fashion {e.g., [CuL]+ (O1,O R), [CuL2] (bis-O1,O R), [CuLH-1] (isomer: O1, O2), [CuL2H-1]- (O1, O R; O1, O2), and [CuL2H-2]2- (isomer: bis-O1, O2)} have "irregular" EPR spectra that are ascribed to the existence of Cu(II)-I(monomer) <==> Cu(II)-I(polymer) equilibria. The formation of polymeric Cu(II)-I species will be favored in these complexes because the glycerol-derived hydroxyl groups at the complex periphery (O, 7O, 8O9) are available for further Cu(II) binding. The presence of polymeric Cu(II)-I species is supported by EPR spectral data from solutions of Cu(II) and the homopolymer of I, colominic acid (Ipoly). Conversely, spectra predicted for Cu(II)-I complexes where I is coordinated in a {I2-} tridentate {e.g., [CuLH-1] (isomer: O1, O R, O7, or O8) and [CuL2H-2]2- (isomer: bis-O1,O R,O7, or O8)} or tetradentate fashion {I3-} {e.g., [CuLH-3]2- (O1, O R, O, 8O9)} are typical for mononuclear tetragonally elongated Cu(II) octahedra. In this latter series of complexes, the tendency toward the formation of polymeric Cu(II)-I analogues is small because the polydentate I effectively wraps up the mononuclear Cu(II) center. This work shows that Cu(II) could potentially mediate the chemistry of sialoglycoconjugate-containing proteins in human biology, such as the sialylated amyloid precursor protein of relevance to Alzheimer's disease.  相似文献   

14.
The photochemical reactions of bis(diethyl-diselenocarbamato)copper(II), Cu(Et2dsc)2, complex have been studied in toluene, CH2Cl2, CHCl3 and chloroalkane/EtOH mixed solvents. Charge-transfer irradiation induces intramolecular oxidation of the ligand and reduction of copper(II) to copper(I) as evidenced by EPR and UV-Vis spectra of the complex as well as quantum yield results. When photolysis is carried out in CHCl3 or CH2Cl2 or in the solvent mixture CHCl3/EtOH resp. CH2Cl2/EtOH of lower than 1:1 EtOH content, the primary photoproduct CuI(Et2dsc) is further oxidised in a dark reaction with the chloroalkane producing the corresponding paramagnetic mixed-ligand CuII(Et2dsc)Cl complex in equilibrium with its chloride-bridged and EPR silent, dimeric form Cu2(Et2dsc)2Cl2. At low concentration of EtOH the equilibrium is shifted to the dimeric form whereas at higher than 1:1 EtOH content in the mixed solvent CHCl3/EtOH it is shifted to CuII(Et2dsc)Cl. A reaction mechanism is proposed and the role of ethanol is discussed.  相似文献   

15.
Three copper(II) complexes, 1, 2, and 3 with L(1), L(2) and L(3) [L(1) = 2-(2-aminoethyl)-pyridine; L(2) = 2-(N-ethyl-2-aminoethyl)-pyridine; L(3) = 3,3'-iminobis(N,N-dimethylpropylamine)], respectively, were synthesized and characterized. Addition of nitric oxide gas to the degassed acetonitrile solution of the complexes were found to result in the reduction of the copper(II) center to copper(I). In cases of complexes 1 and 2, the formation of the [Cu(II)-NO] intermediate prior to the reduction of Cu(II) was evidenced by UV-visible, solution FT-IR and X-band EPR spectroscopic studies. However, for complex 3, the formation of [Cu(II)-NO] has not been observed. DFT calculations on the [Cu(II)-NO] intermediate generated from complex 1 suggest a distorted square pyramidal geometry with the NO ligand coordinated to the Cu(II) center at an equatorial site in a bent geometry. In the case of complex 1, the reduction of the copper(II) center by nitric oxide afforded ligand transformation through diazotization at the primary amine site in acetonitrile solution; whereas, in an acetonitrile-water mixture, it resulted in 2-(pyridine-2-yl)ethanol. On the other hand, in cases of complexes 2 and 3, it was found to yield N-nitrosation at the secondary amine site in the ligand frameworks. The final organic products, in each case, were isolated and characterized by various spectroscopic studies.  相似文献   

16.
The mechanism by which [Cu(II)(L)](OTf)2 and [Cu(II)N3(L)](OTf) (L = TEPA: tris(2-pyridylethyl)amine or TMPA: tris(2-pyridylmethyl)amine; OTf = trifluoromethanesulfonate) react with superoxide (O2*-) to form [Cu(I)(L)](OTf) and O2 is described. Evidence for a CuO2 intermediate is presented based on stopped-flow experiments and competitive oxygen (18O) kinetic isotope effects on the bimolecular reactions of (16,16)O2*- and (18,16)O2*- ((16,16)k/(18,16)k). The (16,16)k/(18,16)k fall within a narrow range from 0.9836 +/- 0.0043 to 0.9886 +/- 0.0078 for reactions of copper(II) complexes with different coordination geometries and redox potentials that span a 0.67 V range. The results are inconsistent with a mechanism that involves either rate-determining O2*- binding or one-step electron transfer. Rather a mechanism involving formation of a CuO2 intermediate prior to the loss of O2 in the rate-determining step is proposed. Calculations of similar inverse isotope effects, using stretching frequencies of CuO2 adducts generated from copper(I) complexes and O2, suggest that the intermediate has a superoxo structure. The use of 18O isotope effects to relate activated oxygen intermediates in enzymes to those derived from inorganic compounds is discussed.  相似文献   

17.
Verma P  Weir J  Mirica L  Stack TD 《Inorganic chemistry》2011,50(20):9816-9825
An intermediate (C) that is observed in both phenol hydroxylation and catechol oxidation with the side-on peroxide species [Cu(2)O(2)(DBED)(2)](2+) (DBED = N(1),N(2)-di-tert-butylethane-1,2-diamine) is identified as a copper(II) semiquinone species ([1](+)) through independent synthesis and characterization. The reaction of the redox-active 3,5-di-tert-butylquinone ligand with [(DBED)Cu(I)(MeCN)](+) yields a copper(II) semiquinone [1](+) complex with a singlet ground state and an intense purple chromophore (ε(580) ~ 3500 M(-1) cm(-1)). All other copper(II) semiquinone complexes characterized to date are paramagnetic and weakly colored (ε(800) ~ 500 M(-1) cm(-1)). Antiferromagnetic coupling between the Cu(II) center and the semiquinone radical in [1](+) is characterized by paramagnetic (1)H NMR and SQUID magnetometry. Comparative X-ray crystal structures along with density functional theory calculations correlate the geometric structures of copper(II) semiquinone complexes with their magnetic and optical properties. The unique observable properties of [1](+) originate from an increase in the overlap of the Cu 3d and semiquinone π orbitals resulting from a large rhombic distortion in the structure with a twist of 51°, attributable to the large isotropic demands of the tert-butyl substituents of the DBED ligand. Independent characterization of [1](+) allows the spectroscopic yields of intermediate C to be quantified in this intriguing hydroxylation reaction.  相似文献   

18.
Copper(I)-dioxygen reactivity has been examined using a series of 2-(2-pyridyl)ethylamine bidentate ligands (R1)Py1(R2,R3). The bidentate ligand with the methyl substituent on the pyridine nucleus (Me)Py1(Et,Bz) (N-benzyl-N-ethyl-2-(6-methylpyridin-2-yl)ethylamine) predominantly provided a (mu-eta(2):eta(2)-peroxo)dicopper(II) complex, while the bidentate ligand without the 6-methyl group (H)Py1(Et,Bz) (N-benzyl-N-ethyl-2-(2-pyridyl)ethylamine) afforded a bis(mu-oxo)dicopper(III) complex under the same experimental conditions. Both Cu(2)O(2) complexes gradually decompose, leading to oxidative N-dealkylation reaction of the benzyl group. Detailed kinetic analysis has revealed that the bis(mu-oxo)dicopper(III) complex is the common reactive intermediate in both cases and that O[bond]O bond homolysis of the peroxo complex is the rate-determining step in the former case with (Me)Py1(Et,Bz). On the other hand, the copper(I) complex supported by the bidentate ligand with the smallest N-alkyl group ((H)Py1(Me,Me), N,N-dimethyl-2-(2-pyridyl)ethylamine) reacts with molecular oxygen in a 3:1 ratio in acetone at a low temperature to give a mixed-valence trinuclear copper(II, II, III) complex with two mu(3)-oxo bridges, the UV-vis spectrum of which is very close to that of an active oxygen intermediate of lacase. Detailed spectroscopic analysis on the oxygenation reaction at different concentrations has indicated that a bis(mu-oxo)dicopper(III) complex is the precursor for the formation of trinuclear copper complex. In the reaction with 2,4-di-tert-butylphenol (DBP), the trinuclear copper(II, II, III) complex acts as a two-electron oxidant to produce an equimolar amount of the C[bond]C coupling dimer of DBP (3,5,3',5'-tetra-tert-butyl-biphenyl-2,2'-diol) and a bis(mu-hydroxo)dicopper(II) complex. Kinetic analysis has shown that the reaction consists of two distinct steps, where the first step involves a binding of DBP to the trinuclear complex to give a certain intermediate that further reacts with the second molecule of DBP to give another intermediate, from which the final products are released. Steric and/or electronic effects of the 6-methyl group and the N-alkyl substituents of the bidentate ligands on the copper(I)-dioxygen reactivity have been discussed.  相似文献   

19.
2-Benzoylpyridine thiosemicarbazone {R(1)R(2)C(2)=N(2)·N(3)H-C(1)(=S)-N(4)H(2), R(1) = py-N(1), R(2) = Ph; Hbpytsc} with copper(I) iodide in acetonitrile-dichloromethane mixture has formed stable Cu(II)-I bonds in a dark green Cu(II) iodo-bridged dimer, [Cu(2)(II)(μ-I)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 1. Copper(I) bromide also formed similar Cu(II)-Br bonds in a dark green Cu(II) bromo-bridged dimer, [Cu(2)(II)(μ-Br)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 3. The formation of dimers 1 and 3 appears to be due to a proton coupled electron transfer (PCET) process wherein copper(I) loses an electron to form copper(II), and this is accompanied by a loss of -N(3)H proton of Hbpytsc ligand resulting in the formation of anionic bpytsc(-). When copper(I) iodide was reacted with triphenylphosphine (PPh(3)) in acetonitrile followed by the addition of 2-benzoylpyridine thiosemicarbazone in dichloromethane (Cu?:?PPh(3)?:?Hbpytsc in the molar ratio 1:1:1), both Cu(II) dimer 1 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)I(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 2 were formed. Copper(I) bromide with PPh(3) and Hbpytsc also formed Cu(II) dimer 3 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)Br(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 4. While complexes 2 and 4 exist as sulfur-bridged Cu(I) dimers, 1 and 3 are halogen-bridged. The central Cu(2)S(2) cores of 2 and 4 as well as Cu(2)X(2) of 1 (X = I) and 3 (X = Br) are parallelograms. One set of Cu(II)-I and Cu(II)-Br bonds are short, while the second set is very long {1, Cu-I, 2.565(1), 3.313(1) ?; 3, Cu-Br, 2.391(1), 3.111(1) ?}. The Cu···Cu separations are long in all four complexes {1, 4.126(1); 2, 3.857(1); 3, 3.227(1); 4, 3.285(1) ?}, more than twice the van der Waals radius of a Cu atom, 2.80 ?. The pyridyl group appears to be necessary for stabilizing the Cu(II)-I bond, as this group can accept π-electrons from the metal.  相似文献   

20.
The synthesis and structure of two thermally stable neutral beta-diketiminato copper(I) olefin complexes are presented along with the structure of a Cu(II)2(mu-OH)2 dimer that results from the reaction of the Cu(I) ethylene complex with O2 via the proposed intermediacy of a Cu(III)2(mu-O)2 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号