首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser performance of 1064 nm domestic Nd:YAG ceramic lasers for 885 nm direct pumping and 808 nm traditional pumping are compared. Higher slope efficiency of 34% and maximum output power of 16.5 W are obtained for the 885nm pump with a 6ram length 1 at.% Nd:YAG ceramic. The advantages for 885nm direct pumping are discussed in detail. This pumping scheme for highly doping a Nd:YAG ceramic laser is considered as an available way to generate high power and good beam quality simultaneously.  相似文献   

2.
We report a high-effciency Nd:YAG laser operating at 1064 nm and 1319nm, respectively, thermally boosted pumped by an all-solid-state Q-switched Ti:sapphire laser at 885 nm. The maximum outputs of 825.4 m W and 459.4mW, at 1064nm and 1319nm respectively, are obtained in a 8-ram-thick 1.1 at.% Nd:YAG crystal with 2.1 W of incident pump power at 885nm, leading to a high slope efficiency with respect to the absorbed pump power of 68.5% and 42.0%. Comparative results obtained by the traditional pumping at 808nm are presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power at 1064nm under the 885nm pumping are 12.2% higher and 7.3% lower than those of 808rim pumping. At 1319nm, the slope efficiency and the threshold with respect to the absorbed pump power under 885nm pumping are 9.9% higher and 3.5% lower than those of 808 nm pumping. The heat generation operating at 1064 nm and 1319 nm is reduced by 19.8% and 11.1%, respectively.  相似文献   

3.
Lupei V  Pavel N  Taira T 《Optics letters》2001,26(21):1678-1680
A comparison of laser emission in highly doped (2.4-and 3.5-at. %) Nd:YAG crystals is made for conventional 808-nm pumping in F(5/2)(4) and resonant pumping at 885 nm in the band that collects the hot transitions Z(2)?R(1) and Z(3)?R(2) of I(9/2)(4)?F(3/2)(4) absorption. A systematic improvement of the laser parameters (slope efficiency and emission threshold) in absorbed power under hot-band pumping is observed, as expected from the reduction of the pump's quantum defect. Together with the expected reduction of heat generation, resonant hot-band pumping in concentrated components shows prospect for greatly increasing the emission capabilities of the Nd:YAG lasers.  相似文献   

4.
The continuous-wave high efficiency laser emission of Nd:YAG at the fundamental wavelength of 1319 nm and its 659.5-nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 885 nm (on the 4 F 3/24 I 13/2 transition). An end-pumped Nd:YAG crystal yielded 9.1 W at 1319 nm of continuous-wave output power for 18.2 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power is 0.55. Furthermore, 5.2 W 659.5 nm red light is acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 0.286. Comparative results obtained for the pump with diode laser at 808 nm (on the 4 F 5/24 I 13/2 transition) are given in order to prove the advantages of the 885 nm wavelength pumping.  相似文献   

5.
Frede M  Wilhelm R  Kracht D 《Optics letters》2006,31(24):3618-3619
A high-power longitudinally pumped Nd:YAG laser using direct pumping into the upper laser level is demonstrated. With an absorbed pump power of 438 W an output power of 250 W was realized, which results in an optical-to-optical efficiency of 57%. To the best of our knowledge, this is the first demonstration of a high-output power 885 nm pumped laser design.  相似文献   

6.
A thin-disc Nd:GdVO4 laser in multi-pass pumping scheme was developed. Continuous-wave output power of 13.9 W at 1.06 μm for an absorbed power at 808 nm of 22 W was demonstrated from a 250-μm thick, 0.5-at.% Nd:GdVO4 in a 4-pass pumping; the slope efficiency in absorbed power was 0.65, or 0.47 in input power. Output performances were also investigated under diode laser pumping at 879 nm, directly into the emitting 4F3/2 level: maximum power of 3.6 W was obtained at 6.2 W of absorbed power with 0.69 slope efficiency. Compared with pumping at 808 nm, into the highly absorbing 4F5/2 level, improvements of laser parameter in absorbed power (increase of slope efficiency, decrease of threshold) were obtained, showing the advantages of the pumping into the emitting level. However, the laser performances expressed vs. the incident power were modest owing to the low absorption efficiency at 879 nm. Thus, increased number of passes of the medium would be necessary in order to match the performances in input power obtained under 808-nm pumping.  相似文献   

7.
A novel flat-flat resonator consisting of two crystals(Nd:YAG + Nd:YVO_4) is established for power scaling in a diode-end-pumped solid-state laser. We systematically compare laser characteristics between multi-segmented(Nd:YAG + Nd:YVO_4) and conventional composite(Nd:YAG + Nd:YAG) crystals to demonstrate the feasibility of spectral line matching for output power scale-up in end-pumped lasers. A maximum continuous-wave output power of 79.2 W is reported at 1064 nm, with M_x~2= 4.82, M_y~2= 5.48, and a pumping power of 136 W in the multi-segmented crystals(Nd:YAG + Nd:YVO_4). Compared to conventional composite crystals(Nd:YAG + Nd:YAG), the optical-optical conversion efficiency of multi-segmented crystals(Nd:YAG + Nd:YVO4) from 808 nm to 1064 nm is enhanced from 30% to 58.8%,while the laser output sensitivity as affected by the diode-laser temperature is reduced from 55% to 9%.  相似文献   

8.
<正>In diode pumped Nd:YAG lasers,the quantum defect is the most important parameter determining the thermal load of the laser crystal,which can be dramatically reduced by pumping directly into the upper laser level.A compact folded three-mirror cavity with a length of 105 mm is optimized to obtain a highly efficient 473-nm laser.When the absorbed pump power(with 15.8-W incident pump power) at 885 nm into Nd:YAG is 10 W,a continuous-wave 473-nm blue laser as high as 2.34 W is achieved by LBO intra-cavity frequency doubled.The optical-to-optical conversion efficiency is 14.8%.To the best of our knowledge, this is the highest efficiency at 473 nm by an intra-cavity doubled frequency Nd:YAG laser.  相似文献   

9.
We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 885 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. We achieved an output power of 7.97 W at 1064 nm for an absorbed pump power at 946 nm of 9.55 W, corresponding to an optical efficiency of 83.4%. The beam quality M2 quality factor is about 1.1 at the maximum output power.  相似文献   

10.
Y Lü  L Zhao  P Zhai  J Xia  S Li  X Fu 《Optics letters》2012,37(15):3177-3179
We present a diode-pumped quasi-three-level neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 885?nm, based on the F3/24-I9/24 transition, generally used for a 946?nm emission. Combined with polarization components (Nd:YAG), the electro-optical crystal KH2PO4 (KDP) formed a Lyot filter in the cavity and compressed the available gain bandwidth. With an incident pump power of 9.2?W, a 714?mW continuous-wave (CW) output at 885?nm was achieved, and the optical-to-optical efficiency was 7.8%. With an adjustable voltage applied to the KDP crystal, the laser wavelength could be tuned from 885?nm to 884?nm. A simultaneous dual-wavelength Nd:YAG laser at 885?nm and 884?nm was also realized by adjusting the free spectral range of the Lyot filter. To our knowledge, it is the first study that has realized the tuning between the 884 and 885?nm lines and the simultaneous dual-wavelength CW laser operation at 885?nm and 884?nm.  相似文献   

11.
The quasi-three-level 908-nm continuous-wave laser emission under direct diode laser pumping at 880 nm into emitting level 4 F 3/2 of Nd:YLF have been demonstrated. An end-pumped Nd:YLF crystal yielded 4.7 W of output power for 11.8 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 43.3%. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880-nm wavelength pumping.  相似文献   

12.
星光Ⅱ装置激光能量测量实时采集和数据传输系统   总被引:1,自引:1,他引:0  
介绍一套激光能量实时采集和多路传输通信系统。该系统兼容现有的不同型号和规格的激光能量计,具有峰值保持和功率积分功能,抗干扰能力强,可实现数据自动采集、处理及长距离多点传送。为实现激光能量测量精密化和自动化打下了技术基础。  相似文献   

13.
A Nd:CNGG laser operated at 935 nm and 1061 nm pumped at 885 nm and 808 nm, respectively, is demonstrated. The 885 nm direct pumping scheme shows some advantages over the 808 nm traditional pumping scheme. It includes higher slope efficiency, lower threshold, and better beam quality at high output power. With the direct pumping, the slope efficiency increases by 43% and the threshold decreases by 10% compared with traditional pumping in the Nd:CNGG laser operated at 935 nm. When the Nd:CNGG laser operates at 1061 nm, the direct pumping increases the slope efficiency by 14% with a 20% reduction in the oscillation threshold.  相似文献   

14.
尤建村  宋晏蓉  张怀金 《光子学报》2014,39(10):1747-1751
为研究808 nm和879 nm两种泵浦光对Nd:GdVO4晶体激光输出特性的影响,并比较两种不同波长泵浦所得连续输出光的效率高低,分析了Nd:GdVO4晶体的能级结构和两种泵浦光作用下的激光输出特性,发现在879 nm也有较强的吸收峰.用808 nm和879 nm两种不同波长泵浦Nd:GdVO4晶体的过程是不同的,808 nm泵浦是一种间接方式能量转移的过程,在此过程中有明显的热负载产生.而879 nm泵浦是将粒子直接激励到激光辐射上能级,降低无辐射弛豫过程产生的热量.从理论上可知,879 nm的泵浦量子效率要高于808 nm的泵浦量子效率,对减少晶体的热产生有很强的优势.实验中采用激光二极管端面泵浦Nd:GdVO4晶体直腔方案,研究了两种不同泵浦光泵浦Nd:GdVO4晶体以获得1 063 nm的连续光,得到了两种光抽运时的斜效率,发现在同样实验条件下,879 nm泵浦的输出光斜效率在小功率泵浦时略高于808 nm|而在大功率泵浦的情况下明显高于808 nm,最高达到38%.同时,在808 nm抽运时,实验上获得了1 341 nm波长的激光,为光通讯的应用提供了一种光源.  相似文献   

15.
Laser emission in the 0.94-, 1.06- and 1.34-micron ranges in diluted and concentrated Nd:YAG crystals longitudinally pumped by a 885-nm diode laser on the 4 I 9/24 F 3/2 transition is investigated. Continuous-wave operation at watt level in all these wavelength ranges is demonstrated with a 1.0-at. % Nd:YAG crystal; however, the laser performance is impeded by the low pump absorption efficiency. Improved output power and overall efficiency were obtained with a highly doped 2.5-at. % Nd:YAG crystal: 5.5 W at 1.06 μm and 3.8 W at 1.34 μm with 0.38 and 0.26 efficiencies, respectively. Comparative results with traditional pumping at 809 nm into the highly absorbing 4 F 5/2 level are presented, showing the advantage of the direct 4 F 3/2 pumping. The influence of the lasing wavelength and of the Nd concentration on the thermal effects induced by the optical pumping in the laser material is discussed. A clear relation between the heat generated in the Nd:YAG crystals in lasing and non-lasing regimes, a function of the Nd doping, is demonstrated. PACS 42.55.Rz; 42.60.By; 42.60.Da  相似文献   

16.
We report multiwatt, diode-pumped cw operation on the (4)F(3/2)-(4)I(9/2) laser transition at 914.5 nm in Nd:YVO(4), for which an output power of 3.0 W and a slope of efficiency of 22.8% were achieved. For the corresponding laser transition of Nd:YAG at 946 nm an output power of 5.35 W and a slope efficiency of 40.2% were measured. By intracavity frequency doubling, an output power of 1.5 W at 473 nm was generated.  相似文献   

17.
We present theoretical and experimental investigations on ground-state direct pumping at 869 nm into the emitting level 4F3/2 of end-pumped quasi-three-level Nd:YAG lasers operating at 946 nm. We have demonstrated, what we believe is for the first time, a Nd:YAG laser at 946 nm directly pumped by diodes and obtained 1.6 W of output power.  相似文献   

18.
We present an efficient, high-brightness laser at 1,112 nm by combining the direct pumping technique with an 885 nm laser diode and the composite crystal. Output power as high as 12.8 W at 1,112 nm is achieved under 22.2 W of absorbed pump power and it yields an optical-to-optical efficiency of 57.7 % and a slope efficiency of 64.0 % with respect to the absorbed pump power. To the best of our knowledge, both of these optical-to-optical and slope efficiencies with respect to the absorbed pump power are the highest values ever reported for 1,112 nm Nd:YAG lasers. Modeling of the temperature rise and stress induced in the laser crystals, with and without the undoped cap, and employing the pump at 808 and 885 nm are performed, respectively. Contributions of the composite crystal geometry and of the pump at 885 nm to lowering the threshold power, enhancing the optical-to-optical and the slope efficiencies with respect to the absorbed pump power are discussed, respectively.  相似文献   

19.
We report an efficiency Nd:CNGG laser operating at 1061 and 1329 nm, respectively, direct pumped by a diode laser at 885 nm for the first time to our knowledge. The maximum outputs of 4.5 and 2.9 W, at 1061 and 1329 nm, respectively, are obtained in a 6-mm-thick 0.5 at % Nd:CNGG crystal with 13.5 W of absorbed pump power at 885 nm, leading to a high slope efficiency with respect to the absorbed pump power of 32.2 and 22.1%. Under traditional pumping at 808 nm, the maximum outputs of 3.9 and 2.7 W, at 1061 and 1329 nm, respectively, are obtained with 15.4 W of absorbed pump power, corresponding to the slope efficiency with respect to the absorbed pump power of 25.2 and 17.9%.  相似文献   

20.
李斌  雷鹏  孙冰  白扬博 《中国物理 B》2017,26(2):24206-024206
An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incident pump power of 40 W, corresponding to a total optical-to-optical efficiency of 58.5%. This is to the best of our knowledge the highest total optical-to-optical efficiency and output power of Nd:YVO_4laser in-band pumped by a 913.9-nm laser diode.The Q-switched operation of this laser was also investigated. Through a contrast experiment of pumping at 808 nm, the experimental results showed that an Nd:YVO_4laser in-band pumped by a wavelength-locked LD at 913.9 nm had excellent pulse stability and beam quality for high repetition rate Q-switching operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号