首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The article describes a two-step synthesis of diastereomeric 3-hydroxy-2-methyl-3-(4-biphenylyl)butanoic acids. In the first step an intermediate alpha-bromo propanoic acid 1-ethoxyethyl ester was synthesized. The second step is a new modified Reformatsky reaction in presence of Zn in tetrahydrofuran (THF) at -5 to 10 degrees C between the previously synthesized intermediate and 4-acetylbiphenyl. Synthesis of the other studied beta-hydroxy-beta-arylpropanoic acids has already been reported. These beta-hydroxy-beta-arylpropanoic acids belong to the arylpropanoic acid class of compounds, structurally similar to the NSAIDs such as ibuprofen. The anti-inflammatory activity and gastric tolerability of the synthesized compounds were evaluated. Molecular docking experiments were carried out to identify potential COX-2 inhibitors among the beta-hydroxy-beta-aryl-alkanoic acids class. The results indicate that all compounds possess significant anti-inflammatory activity after oral administration and that the compounds 2-(9-(9-hydroxy-fluorenyl))-2-methylpropanoic acid (5) and 3-hydroxy-3,3-diphenyl-propanoic acid (3) possess the strongest anti-inflammatory activity, comparable to that of ibuprofen, a standard NSAID,and that none of tested substances or ibuprofen produced any significant gastric lesions.  相似文献   

2.
Following our studies on the gastroprotective effect and cytotoxicity of terpene derivatives, new amides were prepared from the diterpene 8(17)-labden-15,19-dioic acid (junicedric acid) and its 8(9)-en isomer with C-protected amino acids (amino acid esters). The new compounds were evaluated for their gastroprotective effect in the ethanol/HCl-induced gastric lesions model in mice, as well as for cytotoxicity using the following human cell lines: normal lung fibroblasts (MRC-5), gastric adenocarcinoma cells (AGS) and liver hepatocellular carcinoma (Hep G2). A dose-response experiment showed that at 25 mg/kg the C-15 leucyl and C-15,19-dileucylester amides of junicedric acid reduced gastric lesions by about 65.6 and 49.6%, respectively, with an effect comparable to lansoprazole at 20 mg/kg (79.3% lesion reduction). The comparison of the gastroprotective effect of 18 new amino acid ester amides was carried out at a single oral dose of 25 mg/kg. Several compounds presented a strong gastroprotective effect, reducing gastric lesions in the 70.9-87.8% range. The diprolyl derivative of junicedric acid, the most active product of this study (87.8% lesion reduction at 25 mg/kg) presented a cytotoxicity value comparable with that of the reference compound lansoprazole. The structure-activity relationships are discussed.  相似文献   

3.
The empty-level structures and formation of negative ion states via resonance attachment of low-energy (0-15 eV) electrons into vacant molecular orbitals in a series of non-steroidal anti-inflammatory drugs (NSAIDs), namely aspirin, paracetamol, phenacetin, and ibuprofen, were investigated in vacuo by electron transmission and dissociative electron attachment (DEA) spectroscopies, with the aim to model the behavior of these antipyretic agents under reductive conditions in vivo. The experimental findings are interpreted with the support of density functional theory calculations. The negative and neutral fragments formed by DEA in the gas phase display similarities with the main metabolites of these commonly used NSAIDs generated in vivo by the action of cytochrome P450 enzymes, as well as with several known active agents. It is concluded that xenobiotic molecules which possess pronounced electron-accepting properties could in principle follow metabolic pathways which parallel the gas-phase dissociative decay channels observed in the DEA spectra at incident electron energies below 1 eV. Unwanted side effects as, e.g., hepatoxicity or carcinogenicity produced by the NSAIDs under study in human organism are discussed within the "free radical model" framework, reported earlier to describe the toxic action of the well-known model toxicant carbon tetrachloride.  相似文献   

4.
A high percentage of people treated with a long-term nonsteroidal anti-inflammatory drug (NSAID) therapy suffer NSAID-induced gastrointestinal-tract-related side effects. A current hypothesis states that the side effects are related to the topical action of NSAID molecules on gastric mucus that lowers its resistance to luminal acid. The main lipids in human mucus are palmitoyloleoylphosphatidylcholine (POPC) and cholesterol (Chol). In this study, both X-ray diffraction and molecular dynamics (MD) simulation methods were employed to investigate the effects of selected NSAIDs in protonated and deprotonated states on the structural parameters of a POPC-Chol bilayer. The drugs were three commonly used NSAIDs with apparently different gastric toxicity: ketoprofen (KET), aspirin (ASP), and piroxicam (PXM). Both methods revealed that the effects of the NSAIDs on the POPC-Chol bilayer parameters were moderate and only slightly differentiated among the drugs. Much larger differences among the drugs were noticed in their interactions with interfacial water and Na(+) as well as with the polar groups of POPC and Chol, mainly via H-bonds. Of the three NSAIDs, KET interacted with POPC and water the most extensively, whereas ASP interacted with Chol and Na(+) more than did the other two. Interactions of PXM with POPC and Chol polar groups as well as with water and Na(+) were limited.  相似文献   

5.
NSAIDs constitute a heterogeneous class of pharmacological agents widely prescribed for the treatment of inflammation, pain and edema, as well as osteoarthritis, rheumatoid arthritis and musculoskeletal disorders. This class of drugs has proved efficacious on account of their analgesic, anti-pyretic and anti-inflammatory activities, but gastrointestinal toxicity exists as the biggest problem associated with their chronic use. Many attempts have been made to structurally modify conventional NSAIDs as selective COX-2 inhibitors based on the old and still prevalent common belief that selective inhibition of COX-2 would provide safer NSAIDs. The present work thus focused on the synthesis of amide derivatives of one of the conventional non-selective NSAID, meclofenamic acid utilizing the one pot procedure involving a selective agent, bis (2-oxo-3-oxazolidinyl) phosphonic chloride. The synthesized compounds were tested for their in vivo inflammatory activity using carrageenan rat paw edema assay, and were subsequently docked on COX-2 PDB code 4COX to have better insights into their mechanism of action. The amide derivative with N-4-methoxybenzyl moiety (TSN4) proved to have anti-inflammatory potential (72.8%) better than meclofenamic acid (56.75%). This compound also docked with the highest dock score among the synthesized compounds and was found to have both hydrogen bonding with Arg120 and Tyr355 and hydrophobic interactions with Val349, Leu352, Ser353, Tyr385, Trp387, Met522, Val523, Ala527 and Ser530. N-4-methoxybenzyl amide derivative (TSN4) followed by benzyl amide derivative (TSN1) of meclofenamic acid were identified as potential anti-inflammatory compounds in both in vivo and in silico studies.  相似文献   

6.
Non steroidal anti-inflammatory drugs are the most widely used medicines for relief of pain. These drugs have some side effects, particularly toxicity in the gastrointestinal tract and kidneys. Various approaches have been used for obtaining safer anti-inflammatory drugs. In this review we have summarized the recent developments in the following areas; (i) mode of action of NSAIDs (ii) Role of COX-1 & COX-2 in inflammation, (iii) Different approaches used to improve gastric tolerance i.e. chemical manipulation, formulation & co-administration, development of non specific (COX-1 & COX-2 inhibitors) and specific (COX-2 inhibitors) inflammation inhibitors, and development of inflammation inhibitors having a mode of action other than COX-1 & COX-2 inhibition. We have also focused on the safety of COX-2 inhibitors and the synthesis of heterocyclic compounds and their role as inflammation inhibitors.  相似文献   

7.
We report the synthesis of optically active 2-aryl-2-fluoropropionic acids 2 as non-epimerizable mimics of 2-arylpropionic acids 1, a class of compounds which have been widely used as non-steroidal anti-inflammatory drugs (NSAIDs). This is a continuation of our research involving the design, synthesis, and evaluation of chiral fluorine-containing organic molecules as effective analogues of pharmacologically important compounds.  相似文献   

8.
Simmondsia chinensis L. commonly called as Jojoba and belongs to family Simmondsiaceae. It has shown positive pharmacological activities of these compounds which include antidiabetic, antirheumatic, anthelminthic, antipsoriatic, antioxidant, antiepileptic, antigonorrheal, analgesic, anti-inflammatory, and pesticidal activity of jojoba. The multifaceted action of numerous bioactives existing in the seed extract with therapeutic activity have attracted great research interest by pharmaceutical industries. n-hexane extract of Simmondsia chinensis L. (SC) Seeds was analysed by gas chromatography-mass spectroscopy for identification and characterization of phytobioconstituents and its therapeutic claim by traditional system. The major compounds discovered in SC seeds extract are cis-9-octadecen-1-ol (24.85%), 9-octadecen-1-ol, (Z)- (18.24%), Stigmast-5-en-3-ol (14.10%), Ergost-5-en-3-ol, (3-β)-ol (5.26%), (Z)-14-tricosenyl formate (5.24%), Thiositosteroldisulfide (3.64%), Silane, Dimethyl (dimethylpentyloxysilyloxy) tetradecyloxy- (3.41%), Ergost-5-ene, 3-methoxy-, (3β,24R)- (2.55%), Ergosta-5,22-dien-3-ol (2.22%), 1,19-eicosadiene (2.17%), Pentacosane (2.02%), Stigmasta-5,22-dien-3-ol (1.64%), 1,19-eicosadiene (1.57%), 9-octadecen-1-ol, (Z)- (1.46%), 9,19-cyclo-9β-lanostan-3β-ol, 24-methylene- (1.14%), (9Z)-9-octadecenyl palmitate (1.50%), Hexadecanoic acid, 9-octadecenyl ester, (Z) (1.37%), 9Z)-9-octadecenyl (9Z)-9-hexadecenoate (1.01%). The hexane extract of Simmondsia chinensis seeds comprises various polar and nonpolar phytobioconstituents. These compounds were established qualitatively via GC-MS evaluation. GC-MS reports will be promising in pharmaceutical sector in identification of variety of Phytobioconstituents in distinct plant extracts, polyherbal extract and the standardization of particular plant materials.  相似文献   

9.
Phospholipid derivatives of methotrexate (MTX) having enhanced membrane penetration (DP-71 being the most important) are potential prodrugs for treatment of autoimmune and inflammatory diseases as well as diseases involving abnormal cell proliferation. The previously published reversed-phase HPLC methods for similar compounds, phospholipid derivatives of valproic acid and non-steroidal anti-inflammatory drugs (NSAIDs), could not be used for MTX derivatives due to highly basic character of the MTX core molecule. The new HPLC procedure using gradient elution was developed as a compromise between the pharmacopoeial method for MTX and the previous "generic" procedure for phospholipid derivatives of NSAIDs. The newly developed method is sensitive, selective, reproducible, and stability indicating. Identification of major related compounds was carried out. The bioanalytical applications of this method, as well as of the derived isocratic procedure, are discussed and illustrated by examples of pharmacokinetic studies.  相似文献   

10.
We provide a full account of the discovery of the (E)-9,10-dehydro derivatives of 12,13-desoxyepothilone B (dEpoB), a new class of antitumor agents with promising in vivo preclinical properties. The compounds, which are to date not available by modification of any of the naturally occurring epothilones, were discovered through total chemical synthesis. We describe how our investigations of ring-closing metathesis reactions in epothilone settings led to the first and second generation syntheses of (E)-9,10-dehydro-12,13-desoxyepothilone congener 6. With further modifications, the synthesis was applied to reach a 26-trifluoro derivative compound (see compound 7). To conduct such studies and in anticipation of future development needs, the total synthesis which led to the initial discovery of compound 7 was simplified significantly. The total synthesis methodology used to reach compound 7 was then applied to reach more readily formulated compounds, bearing hydroxy and amino functionality on the 21-position (see compounds 45, 62, and 63). Following extensive in vitro evaluations of these new congeners, compound 7 was nominated for in vivo evaluations in xenograft models. The data provided herein demonstrate a promising therapeutic efficacy, activity against large tumors, nonrelapseability, and oral activity. These results have identified compound 7 as a particularly promising compound for clinical development. The excellent, totally synthetic, route to 7 makes such a program quite feasible.  相似文献   

11.
Russian Journal of Organic Chemistry - A series of novel 1,2,4-triazole nonsteroidal anti-inflammatory drugs (NSAIDs) derived from etodolac were designed and synthesized. The synthesized compounds...  相似文献   

12.
In an effort to combine the anti-proliferative effect of CUR-BF2 and CUR compounds with anti-inflammatory benefits of non-steroidal anti-inflammatory drugs (NSAIDs), a library of the bis- and mono-NSAID/CUR-BF2 and NSAID/CUR conjugates were synthesized by coupling flufenamic acid, flurbiprofen, naproxen, indomethacin, and ibuprofen to diversely substituted hydroxy-benzaldehydes via an ester linkage, and by subsequent reaction with acetylacetone-BF2 to form the bis- and the mono-NSAID/CUR-BF2 adducts. Since conversion to NSAID/CUR by the previously developed decomplexation protocol showed limited success, a set of NSAID/CUR conjugates were independently prepared by directly coupling the NSAIDs with parent curcumin. The bis-NSAID/CUR-BF2 and bis-NSAID-CUR hybrids exhibited low cytotoxicity in NCI-60 assay, and in independent cell viability assay on colorectal cancer (CRC) cells (HCT116, HT29, DLD-1, RKO, SW837, CaCo2) and in normal CR cells (CCD841CoN). By contrast, the mono-naproxin and mono-flurbiprofen CUR-BF2 adducts exhibited remarkable anti-proliferative and apoptopic activity in NCI-60 assay most notably against HCT-116 (colon), OVCAR-3 (ovarian), and ACHN (renal) cells. Computational molecular docking calculations showed favorable binding energies to HER2, VEGFR2, BRAF, and Bcl-2 as well as to COX-1 and COX-2, which in several cases exceeded known inhibitors. The main interactions between the ligands and the proteins were hydrophobic, although several hydrogen bonds were also observed. A sub-set of six compounds that had exhibited little or no cytotoxicity were tested for their anti-inflammatory response with THP-1 human macrophages in comparison to parent NSAIDs or parent curcumin.  相似文献   

13.
Despite the fact that dietary habits and lifestyles are incredibly advancing, gastric ulceration is still a terrible complaint. Extensive use of non-steroidal anti-inflammatory drugs (NSAIDs) and alcohol, in addition to stress, are all predisposing factors for ulcers. Most medical treatments are always time consuming and not efficient or satisfactory to the patients. Cardiovascular patients always need NSAIDs, or mostly cannot quit alcohols, while using many cardiovascular drugs. We aim to study a possible benefit of a common nitrogen oxide donor, anti-anginal drug, nicorandil [N-(2-hydroxyethyl) nicotinamide nitrate ester], in managing acute gastric ulcers through studying its effect on some relevant intermediates to ulcerogenesis as lipid peroxidation, tumor necrosis factor-alpha (TNF-α), and nitric oxide (NO). In addition, gastric mucosal histology was studied to pursue the drug effects on tissue level. Our study revealed that both indomethacin and alcohol induced gastric ulcer mainly through up-regulation of gastric mucosal lipid peroxidation, local tissue inflammation, leukocytic infiltration, and necrosis. Both ulcerogens significantly elevated TNF-α and decreased NO, initiating ulcer formation. Nicorandil pretreatment depicted a higher preventive index in indomethacin- (89.8%) and alcohol-induced (77.7%) acute ulceration. On the tissue level, it also protected the gastric mucosa combating leukocyte infiltration and tissue congestion. Nicorandil protected tissue necrosis through decreasing oxidative stress, elevating NO levels, and down-regulating the ulcerogen-induced TNF-α elevation and improved sub-mucosal blood supply. We conclude that nicorandil may be a suitable bimodal treatment for cardiovascular patients who are at high risk of gastric ulcers by using variable analgesics to alleviate possible cardiac pain episodes, and probably frequent doses will offer a more established and long-lasting protection.  相似文献   

14.
Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of pharmaceutical compounds widely used in human health care and often found in the aquatic environment, with their metabolites. After an introduction that describes the general problem of drug contamination, the properties of NSAIDs, and environmental risk assessment, this review surveys the chromatographic and electrophoretic methods of analysis in use today for monitoring the most important representatives of this pharmaceutical class in different environmental samples.  相似文献   

15.
Novel oximes were prepared from the corresponding aldehyde or ketone in the usual way, and a number of oxime esters, O-lauroyl, O-2-pyridinecarbonyl, O-nicotinoyl, and O-isonicotinoyl oximes were synthesized by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI)-4-dimethylaminopyridine (DMAP) method or a mixed anhydride method, in our search for potent anti-inflammatory compounds. The anti-inflammatory activity of these compounds was assessed by the carrageenan-induced paw edema assay in rats. The oximes (4, 5, and 13), O-lauroyloxime 1L, O-nicotinoyloximes (1N, 2N, 3N, and 4N), O-isonicotinoyloxime 1I, and O-2-pyridinecarbonyloxime 7P showed higher anti-inflammatory potency than aspirin, a prostaglandin cyclooxygenase inhibitor.  相似文献   

16.
[Ru2(dNSAID)4Cl] and novel [Ru2(dNSAID)4(H2O)2]PF6 complexes, where dNSAID = deprotonated carboxylate from the non-steroidal anti-inflammatory drugs (NSAIDs), respectively: ibuprofen, Hibp (1) and aspirin, Hasp (2); naproxen, Hnpx (3) and indomethacin, Hind (4), have been prepared and characterized by optical spectroscopic methods. All of the compounds exhibit mixed valent Ru2(II, III) cores where metal–metal bonds are stabilized by four drug-carboxylate bridging ligands in paddlewheel type structures. The diruthenium complexes and their parent NSAIDs showed no significant effects for Hep2 human larynx or T24/83 human bladder tumor. In contrast, the coordination of Ru2(II, III) core led to synergistic effects that increased significantly the inhibition of C6 rat glioma proliferation in relation to the organic NSAIDs naproxen and ibuprofen. The possibility that the complexes Ru2-ibp and Ru2-npx may exert effects (anti-angiogenic and anti-matrix metalloprotease) that are similar to those exhibited by NAMI-A opens new horizons for in vivo C6 glioma model studies.  相似文献   

17.
A stereoselective synthesis of (25S)-Δ(1)-, (25S)-Δ(1,4)-, (25S)-Δ(1,7)-, (25S)-Δ(8(14))-, (25S)-Δ(4,6,8(14))-dafachronic acid, methyl (25S)-Δ(1,4)-dafachronate and (25S)-5α-hydroxy-3,6-dioxocholest-7-en-26-oic acid is described. (25S)-Δ(1,4)-Dafachronic acid and its methyl ester are natural products isolated from corals and have been obtained by synthesis for the first time. (25S)-5α-Hydroxy-3,6-dioxocholest-7-en-26-oic acid represents a promising synthetic precursor for cytotoxic marine steroids.  相似文献   

18.
19.
The potential energy surface of acetylsalicylic acid, aspirin, has been explored at the RHF/6-31G* and B3LYP/6-31G* levels, and single-point calculations were performed at levels up to B3LYP/6-311G**//B3LYP/6-31G*. All conformational isomers have been located, the thermochemical functions have been computed, and relative energies and free enthalpies were determined. The conformational space of aspirin is spanned by three internal coordinates, and these are the carboxylic acid C-O conformation (s-trans preferred by about 7 kcal/mol), the C-COOH conformation (Z preferred unless there are H-bonding opportunities), and the ester C-O conformation (s-trans preferred by about 4 kcal/mol). There are nine aspirin isomers since one of the conformers realizes hydrogen-bonding structure isomerism as well. Neighboring group interactions are discussed with reference to the intrinsic properties of benzoic acid and phenyl acetate. The intrinsic conformational preference energies for benzoic acid and phenyl acetate are not additive. The acid s-trans preference energies differ by as much as 9 kcal/mol depending on the Ph-COOH and ester conformations. Similarly, the E-preference energies about the Ph-COOH bond vary by as much as 6 kcal/mol depending on the ester conformation. The structural discussion suggests an overall ortho repulsion between the functional groups in all aspirin isomers including the intramolecularly hydrogen-bonded isomers. The isodesmic reaction between the most stable conformers of benzoic acid and phenyl acetate to form aspirin and benzene is found to be endothermic by 2.7 kcal/mol and provides compelling evidence for and a quantitative measure of ortho repulsion. The ortho repulsion of 2.7 kcal/mol is a lower limit, and the ortho repulsion can increase to as much as 6 kcal/mol in some aspirin isomers.  相似文献   

20.
Prompted by our discovery of a new class of conformationally-locked indeno[2,1-c]quinolines as anti-mycobacterials, compounds 2a and 3a (Fig. 1; MIC < 0.39 μg mL(-1) and 0.78 μg mL(-1), respectively)(14) with a freely rotating C2-imidazolo substituent, we herein describe the synthesis of pentacyclic azole-fused quinoline derivatives 4 and 5, in which we have restricted the rotation of the C2-imidazolo moiety by fusing it to the adjacent quinoline-nitrogen to give a five-membered fused azole heterocycle. The idea of locking the flexibility of the system by conformational constraint was simply to reduce its entropy, thereby reducing the overall free-energy of its binding to the target receptor. Out of 22 different azole-fused indeno[2,1-c]quinoline derivatives, seven structurally distinct compounds, 9, 15, 17, 25, 27, 28 and 29, have shown 79-99% growth inhibition of Mycobacterium tuberculosis H37Rv at a fixed dose of 6.25 μg mL(-1). The efficacies of these compounds were evaluated in vitro for 8/9 consecutive days using the BACTEC radiometric assay upon administration of single dose on day one. Of these, two compounds, 9 and 28, inhibited growth of M. tuberculosis very effectively at MIC < 0.39 μg mL(-1) (0.89 μM and 1 μM, respectively). These active compounds 9, 15, 17, 25, 27, 28 and 29 were screened for their cytotoxic effect on mammalian cells (human monocytic cell line U937), which showed that the human cell survival is almost unperturbed (100% survival), except for compound 25, hence these new compounds with new scaffolds have been identified as potent anti-mycobacterials, virtually with no toxicity. Thus these "hit" molecules constitute our important "leads" for further optimization by structure-activity relationship against TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号