首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coumarin-based fluorescent chemosensor 1 for Zn2+ was designed and synthesized. Compound 1 exhibits lower background fluorescence due to intramolecular photoinduced electron transfer. However, upon mixing with Zn2+ in 30% (v/v) aqueous ethanol, a “turn-on” fluorescence emission is observed. The fluorescence emission increases linearly with Zn2+ concentration in the range 0.5–10 μmol L−1 with a detection limit of 0.29 μmol L−1. No remarkable emission enhancement was, however, observed for other metal ions. The proposed chemosensor was applied to the determination of Zn2+ in water samples with satisfactory results.  相似文献   

2.
《Current Applied Physics》2015,15(8):851-856
DNA is one of the most promising molecules for use in nanotechnology because it has a nanoscale size and also has the ability for self-assembly. In this paper, we discuss the use of free-solution growth for a 1D DNA open tube (OT) and substrate-assisted growth for a 2D open lattice (OL), which can both achieve similar design schemes. We introduced biotinylated OT and OL, which can be bound with streptavidin for visualization, to verify via atomic force microscopy that dimensional structures have in fact been formed. Additionally the coverage ratio controlled by the concentration of the DNA monomer was analyzed to understand the lattice growth on the substrate. The DNA lattices were observed to start growing on the substrate at a concentration of around 1 nM (threshold) and to achieve full coverage at 10 nM (saturation concentration). Finally, the Raman spectra and the current–voltage characteristics of Zn2+-doped OLs were obtained in order to demonstrate the feasibility of using such methods to produce useful materials for nanodevices and biosensors. As [Zn2+] increases above the critical value of 0.5 mM, the Raman peaks gradually decrease. The resistance decreases up to the critical value of [Zn2+], and then decreases [Zn2+] continues to increase.  相似文献   

3.
Time-resolved small-angle neutron scattering (TR-SANS) was employed to observe temperature-induced phase transitions from the sponge (L 3 to the lamellar ( L α phase, and vice versa, in the water-oil (n -decane)-non-ionic surfactant ( C12E5 system using both bulk and film contrast. Samples of different bilayer volume fractions φ and solvent viscosities η were investigated applying various amplitudes of temperature jump ΔT . The findings of a previous 2H -NMR study could be confirmed, where the lamellar phase formation was determined to occur through a nucleation and growth process, while it was concluded that the L 3 -phase develops in a mechanistically different and more rapid manner involving uncorrelated passage formation. Likewise, the kinetic trends of the nucleation and growth transition (decreased transition time with increase of φ and ΔT were witnessed once again. Additionally, NMR and SANS data that demonstrate a strong dependency of that process on solvent viscosity η are presented. Contrariwise, it is made evident via both SANS and NMR results that the L α -to-L 3 transition time is independent (within experimental sensitivity) of the varied parameters (φ , ΔT , η . Unusual scattering evolution in one experiment, originating from a highly ordered lamellar phase, intriguingly hints that a major rate determining factor is the disruption of long-range order. Furthermore, the bulk contrast investigations give insight into structure peak shifts/development during the transitions, while the film contrast experiments prove the bilayer thickness to be constant throughout the phase transitions and show that there is no evidence for a change in the short-range order of the bilayer structure. The latter was considered possible, due to the different topology of the L 3 and L α phases. Lastly, an unexpected yet consistent appearance of anisotropic scattering is detected in the L 3 -to- L α transitions.  相似文献   

4.
The interactions of norfloxacin (NFA), DNA, and Cu2+ are studied by fluorescence and UV-spectra method. According to the experimental results, it can be concluded that NFA can form a steady binary complex with Cu2+. There is a linear relationship between the Fluorescence intensity of the norfloxacin–Cu2+–DNA system and the concentration of DNA. And when the concentration of the NFA is 1.95×10−5 mol L−1, they possess a good linearity in the concentration of DNA ranged from 4.7×10−6 to 2.8×10−5 mol L−1.It is a good method due to the high sensitivity and selectivity.  相似文献   

5.
We report a combined use of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) to the study of counterion condensation in ionic micelles. Small-angle neutron and X-ray scattering measurements have been carried out on two surfactants cetyltrimethylammonium bromide (CTABr) and cetyltrimethylammonium chloride (CTACl), which are similar but having different counterions. SANS measurements show that CTABr surfactant forms much larger micelles than CTACl. This is explained in terms of higher condensation of Br counterions than Cl counterions. SAXS data on these systems suggest that the Br counterions are condensed around the micelles over smaller thickness than those of Cl counterions.  相似文献   

6.
The photophysical and complexing properties of Rhod-5N (commercially available) in MOPS buffer are reported. This fluorescent molecular sensor consists of a BAPTA chelating moiety bound to a rhodamine fluorophore. Its fluorescence quantum yield is low and a drastic enhancement of fluorescence intensity upon cation binding was observed. Special attention was paid to the complexation with Cd2+, a well known toxic metal ion. Possible interference with other metal ions (Na+, K+, Mg2+, Ca2+, Zn2+, Pb2+) was examined. Rhod-5N was found to be highly selective of Cd2+ over those interfering cations except Pb2+. The limit of detection is 3.1 μg l−1.  相似文献   

7.
Alumina (Al2O3) powders doped with Er3+, Yb3+ and Zn2+ ions have been prepared by a low-temperature combustion synthesis technique. The phase purity and crystalline structure of the combustion products are confirmed by powder X-ray diffraction. An efficient frequency upconversion in the visible region and the emission in the infrared (IR) region respectively corresponding to the 2H11/2, 4S3/24I15/2, 4F9/24I15/2 and 4I13/24I15/2 transitions upon direct excitation with a CW laser lasing at ∼980 nm are discussed. The enhancement observed in the intensity of the upconversion emission bands in the visible region and the emission band in the IR region due to the presence of Yb3+ and Zn2+ in Er3+:Al2O3 powders is reported and explained in detail.  相似文献   

8.
Material property dependence on the OH/Zn2+ molar ratio of the precursor was investigated by varying the amount of NaOH during synthesis of ZnO. It was necessary to control the water content and temperature of the mixture to ensure the reproducibility. It was observed that the structural properties, particle size, photoluminescence intensity and wavelength of maximum intensity were influenced by the molar ratio of the precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite ZnO, indicating a single phase. UV measurements show the absorption that comes from the ZnO nanoparticles in visible region. The absorption edge of these ZnO nanoparticles are shifted to higher energies and the determined band gap energies are blue shifted as the OH/Zn2 molar ration increases, due to the quantum confinement effects. The photoluminescence characterization of the ZnO nanostructures exhibited a broad emission band centred at green (600 nm) region for all molar ratios except for OH/Zn2+ = 1.7 where a second blue emission around 468 nm was also observed. The photoluminescence properties of ZnO nanoparticles were largely determined by the size and surface properties of the nanoparticles.  相似文献   

9.
A sensitive fluorescence enhancement system was developed for the determination of zinc (II). The fluorescence intensity of the Tb- N- (2 - Pyridinyl) ketoacetamide (PKA) system was greatly enhanced by the addition of triethylamine (Et3N) and zinc nitrate in the methanol solution. The excitation and emission wavelengths were 329 nm and 546 nm, respectively. Under optimal conditions, the fluorescence intensities varied linearly with the concentration of Zn2+ in the range of 8.0×10−7−5.0×10−6 M with a detection limit of 9.9×10−8 M. The interferences of some substances were described. This method was applied to the determination of amounts of Zn2+ in soybean, rice, and wheat, respectively. The results showed that the proposed procedure is a high selective, simple, and rapid method to the determination of Zn2+ ion. The mechanism of fluorescence enhancement was also studied.  相似文献   

10.
This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn2+ and metal impurities were not major contributors of ROS induction as indicated by limited free Zn2+ cytotoxicity, extent of Zn2+ dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose–response pattern unseen in other metal oxides, and (3) neither free Zn2+ nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.  相似文献   

11.
The ion-exchange selectivity parameters for the exchange of trace calcium, strontium, cobalt, nickel, zinc, and cadmium ions with hydrogen ion in cross-linked polystyrene-sulfonic acid cation exchangers have been determined from equilibrium ionic distribution measurements at 25°C in dilute solutions of perchloric acid and polystyrene-sulfonic acid. The selectivity behavior in perchloric acid solutions shows that the divalent ion is always preferred by the resin phase. The selectivity coefficients are a smooth function of resin phase concentration, increasing with concentration for Sr2+ more than for Ca2+ and Cd2+ and being practically independent of resin phase concentration for Co2+, Ni2+, and Zn2+. The selectivity coefficients measured in salt-free solutions of polystyrene-sulfonic acid show a marked dependence on the polyelectrolyte concentration, the divalent ion being preferred by the aqueous phase. This preference diminishes with the concentration of polyelectrolyte. These results are interpreted by resort to the Gibbs-Duhem equation. This thermodynamic analysis has been facilitated by the availability of osmotic coefficient data for the pure polyelectrolyte ion forms over a large concentration range. Ion-exchange selectivity predictions by using this approach accurately reflect the observed ion-exchange selectivity behavior.  相似文献   

12.
The effect of the substitution of Co2+, Mn2+, and Zn2+ ions for Ni2+ ions on the magnetic, dielectric, and ferroelectric properties of vanadate single crystals (Ni1 − x T x )3V2O8 has been analyzed. It has been found that the low-level (x ≤ 0.1) substitution of both magnetic and nonmagnetic ions stabilizes the ferroelectric state with a cycloidal magnetic structure. The existence region of this state is expanded to low temperatures down to 3 K for Zn2+ and below 1.8 K for Co2+ and Mn2+ owing to the suppression of a low-temperature weak ferromagnetic phase. At the same time, the ferroelectric phase disappears completely at large concentrations of Co and Mn. The effect of magnetic fields on the magnetic and ferroelectric states has been analyzed. It has been shown that the magnetic field along the c axis suppresses the ferroelectric state, whereas the magnetization along the antiferromagnetism axis (a axis) induces the reentrant phase transition from a paraelectric weak ferromagnetic structure to a ferroelectric structure. The corresponding H-T phase diagrams have been drawn.  相似文献   

13.
《Solid State Ionics》2006,177(5-6):601-605
In this study, SnO2 and ZnO were co-doped in In2O3, and the phase development and electrical characteristics were examined. When Zn2+ was added to 20 at.% Sn4+ contained In2O3, in which a large amount of In4Sn3O12 second phase exists, the amount of the second phase decreased as the content of Zn2+ increased, which promoted grain growth and increased carrier mobility. In the case of a simultaneous substitution of Sn4+ and Zn2+ into In2O3 with almost the same atomic ratio, a large grain size without second phase was observed, while small grain sizes with many second phases were developed when Sn4+ and Zn2+ were added with different atomic ratios. The electrical characteristics analyzed by Hall effect measurement showed that the electron mobility and conductivity showed a close relationship with the microstructure, while the carrier concentration was almost constant regardless of the Zn2+ content.  相似文献   

14.
Fluorescence properties of three potential antitumoral compounds, a 3-(dibenzothien-4-yl)indole 1, a phenylbenzothienoindole 2 and a 3-(dibenzofur-4-yl)indole 3, were studied in solution and in lipid aggregates of dipalmitoyl phosphatidylcholine (DPPC), dioleoyl phosphatidylethanolamine (DOPE) and egg yolk phosphatidylcholine (Egg-PC). The 3-(dibenzofur-4-yl)indole 3 exhibits the higher fluorescence quantum yields in all solvents studied (0.32 ≤ ΦF ≤ 0.51). All the compounds present a solvent sensitive emission, with significant red shifts in alcohols. The results point to an ICT character of the excited state, more pronounced for compound 1. Fluorescence (steady-state) anisotropy measurements of the compounds incorporated in lipid aggregates of DPPC, DOPE and Egg-PC indicate that the three compounds are deeply located in the lipid bilayer, feeling the difference between the rigid gel phase and fluid phases.  相似文献   

15.
A phosphor Tb3+-doped ZnWO4 (ZWO:Tb) phosphors were prepared by a hydrothermal method. X-ray powder diffraction (XRD) analysis revealed that the as-obtained sample is pure ZnWO4 phase. The excitation and emission spectra indicated that the phosphor could be well excited by ultraviolet light (272 nm) and emit blue light at about 491 nm and green light at about 545 nm. Significant energy transfer from WO42− groups to Tb3+ ions has been observed. Two approaches to charge compensation are investigated: (a) 2Zn2+ = Tb3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Zn2+ = 2Tb3+ + vacancy. Compared with two charge compensation patterns in the ZnWO4:Tb3+, it has been found that ZnWO4:Tb3+ phosphors used Li+ as charge compensation show greatly enhanced bluish-green emission under 272 nm excitation.  相似文献   

16.
Two highly photostable yellow–green emitting 1,8-naphthalimides 5 and 6, containing both N-linked hindered amine moiety and a secondary or tertiary cation receptor, were synthesized for the first time. Novel compounds were configured as “fluorophore–spacer–receptor” systems based on photoinduced electron transfer. Photophysical characteristics of the dyes were investigated in DMF and water/DMF (4:1, v/v) solution. The ability of the new compounds to detect cations was evaluated by the changes in their fluorescence intensity in the presence of metal ions (Cu2+, Pb2+, Zn2+, Ni2+, Co2+) and protons. The presence of metal ions and protons was found to disallow a photoinduced electron transfer leading to an enhancement in the dye fluorescence intensity. Compound 5, containing secondary amine receptor, displayed a good sensor activity towards metal ions and protons. However the sensor activity of dye 6, containing a tertiary amine receptor and a shorter hydrocarbon spacer, was substantially higher. The results obtained indicate the potential of the novel compounds as highly photostable and efficient “off–on” pH switchers and fluorescent detectors for metal ions with pronounced selectivity towards Cu2+ ions.  相似文献   

17.
A new Zn2+ fluorescent sensor NIDPA, with 1,8-naphthalimide as reporting group and di-2-picolylamine (DPA) as recognizing group, has been synthesized via simple steps. Based on photo-induced electron transfer (PET) mechanism, NIDPA has a five-fold fluorescent enhancement and 10 nm absorption blue-shift under simulated physiological conditions corresponding to the binding of Zn2+. Apparent dissociation constant for Zn2+ (Kd) is 0.83 nM, and Ca2+, Mg2+, Fe2+, Ni2+ and Cr3+have little influence on fluorescent enhancement. These results suggest that NIDPA can be used to quantitatively and selectively measure the concentration of Zn2+ around sub-nanomolar range.  相似文献   

18.
In this work, zinc sulfide (ZnS) nanoparticles had been synthesized on DNA network/mica and mica surface, respectively. The synthesis was carried out by first dropping a mixture of zinc acetate and DNA on a mica surface for the formation of the DNA networks or zinc acetate solution on a mica surface, and subsequently transferring the sample into a heated thiourea solution. The Zn2+ adsorbed on DNA network/mica or mica surface would react with S2− produced from thiourea and form ZnS nanoparticles on these surfaces. X-ray diffraction and atomic force microscopy (AFM) were used to characterize the ZnS nanoparticles in detail. AFM results showed that ZnS nanoparticles distributed uniformly on the mica surface and deposited preferentially on DNA networks. It was also found that the size and density of ZnS nanoparticles could be effectively controlled by adjusting reaction temperature and the concentration of Zn2+ or DNA. The possible growth mechanisms have been discussed in detail.  相似文献   

19.
In this study, we report the kinetics of reduction reactions of single and double chain surfactant cobalt(III) complexes of octahedral geometry, cis-[Co(en)2(4AMP)(DA)](ClO4)3 and cis-[Co(dmp)2(C12H25NH2)2](ClO4)3 (en = ethylenediamine, dmp = 1,3-diaminopropane, 4AMP = 4-aminopropane, C12H25NH2 = dodecylamine) by Fe2+ ion in dipalmitoylphosphotidylcholine (DPPC) vesicles at different temperatures under pseudo first-order conditions. The kinetics of these reactions is followed by spectrophotometry method. The reactions are found to be second order and the electron transfer is postulated as outer sphere. The remarkable findings in the present investigation are that, below the phase transition temperature of DPPC, the rate decreases with an increase in the concentration of DPPC, while above the phase transition temperature the rate increases with an increase in the concentration of DPPC. The main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes. Besides, comparing the values of rate constants of these outer-sphere electron transfer reactions in the absence and in the presence of DPPC, the rate constant values in the presence of DPPC are always found to be greater than in the absence of DPPC. This is ascribed to the double hydrophobic fatty acid chain in the DPPC that gives the molecule an overall tubular shape due to the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes more suitable for vesicle aggregation which facilitates lower activation energy, and consequently higher rate is observed in the presence of DPPC. The activation parameters (ΔS# and ΔH#) of the reactions at different temperatures have been calculated which corroborate the kinetics of the reaction.  相似文献   

20.
We have performed density functional theory (DFT) calculations in order to study the gas‐phase interaction of oxo‐ and thio‐oxazolidine derivatives with Zn2+. The calculations were performed at B3LYP/6‐311+(2df,2p) level of theory. It has been found, in all cases, that the direct association of Zn2+ with the carbonyl and thiocarbonyl groups takes place at the heteroatom attached to position 2 irrespective of its nature. This preference has been attributed to the resonance effects caused by the nearest heteroatoms (oxygen and nitrogen). The most stable complexes correspond to structures with Zn2+ bridging between the heteroatom at position 2 or 4 of the 4‐ or 2‐enol (or the 4‐ or 2‐enethiol) tautomer and the dehydrogenated ring nitrogen atom, N3. Zn2+ association has a clear catalytic effect on the tautomerization processes which connect the oxo–thione forms with the enol–enethiol tautomers. Hence, although the enol–enethiol tautomers of oxazolidine and its thio derivatives should not be observed in the gas phase, the corresponding Zn2+ complexes are the most stable species and should be accessible, because the tautomerization barriers are smaller than the Zn2+ binding energies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号