首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
TA2合金激光熔覆自润滑复合涂层组织与摩擦学性能   总被引:3,自引:1,他引:2  
以三种不同质量分数配比为40%Ti–19.5%Ti C–40.5%WS_2、40%Ti–25.2%Ti C–34.8%WS_2、40%Ti–29.4%Ti C–30.6%WS_2的复合粉末为预置原料,采用激光熔覆技术在钛合金TA2表面原位合成自润滑耐磨复合涂层.系统地分析了涂层的物相、组织、显微硬度及其摩擦学性能与机理.结果表明:三种涂层的显微硬度分别为HV_(0.5)927.1、HV_(0.5)1007.5和HV_(0.5)1052.3,相对于基体(HV_(0.5)180)有极大的提高;三种涂层的摩擦系数和磨损率分别为0.41和30.98×10~(–5) mm~3/(N·m);0.30和18.92×10~(–5) mm~3/(N·m)以及0.34和15.98×10~(–5) mm~3/(N·m).WS_2质量分数为34.8%和30.6%的预置粉末制备的涂层表现出较好的耐磨减摩性能,其磨损机理为轻微的塑性变形和黏着磨损.  相似文献   

2.
采用激光熔覆技术在304不锈钢表面制备了Ni60/h-BN自润滑耐磨复合涂层,对涂层在600℃(去应力退火)进行1 h和2 h热处理,分析了热处理前后复合涂层的显微组织、硬度和摩擦学性能的变化.结果表明:三种涂层中,热处理1 h后涂层的显微硬度最大(最高值HV0.5765.0),在10 N干摩擦条件下,其摩擦系数为0.39,磨损率为3.37×10~(–6)mm/(Nm),该涂层表现出最好的耐磨减摩性能,磨损机理主要表现为轻微的磨粒磨损;未热处理的涂层摩擦系数为0.53,磨损率为6.39×10~(–6) mm/(Nm),磨损机理主要表现为脆性断裂、黏着磨损和磨粒磨损;热处理2 h后的涂层摩擦系数为0.39,磨损率为5.29×10~(–6)mm/(Nm),磨损机理主要表现为磨粒磨损和轻微黏着磨损.在本文试验条件下,后热处理1 h可有效提高激光熔覆自润滑耐磨涂层的硬度并改善其耐磨减摩性能.  相似文献   

3.
MoSi2-Mo5Si3-Mo5SiB2复合材料是一种很有发展前景的高温耐磨材料,但MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的干滑动摩擦磨损性能尚不清楚. 本文中通过销-盘式干滑动摩擦磨损试验,考察了MoSi2-Mo5Si3-Mo5SiB2/SiC配对副在不同温度(25~1 000 ℃)和载荷下(2.5~10 N)的摩擦学特性. 结果表明:试验温度和载荷对MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的摩擦系数影响较大,而对其磨损率影响较小. 载荷为5 N时,在25~1 000 ℃区间,摩擦系数和磨损率分别在0.11~0.43和0.513×10-7~0.544×10-7 mm3/(N·m)范围;在25~400 ℃时,磨损机制以轻微的氧化和黏着磨损为主,在600~1 000 ℃磨损机制主要表现为严重的氧化和黏着磨损. 在1 000 ℃时,随着载荷(2.5~10 N)的增加,摩擦系数和磨损率分别为0.29~0.38和0.540×10-7~0.547×10-7 mm3/(N·m);载荷为2.5~10 N时,始终存在黏着和氧化磨损;载荷为7.5~10 N时,材料磨损表面还伴随碾压塑性变形的特征.   相似文献   

4.
为提高304不锈钢的摩擦学性能,将质量分数为30%和60%的球形WC添加到铁基复合粉末,采用等离子堆焊技术在其表面制备了WC增强铁基复合涂层.分析其显微组织结构、物相和显微硬度,在恒定载荷(50 N)和滑动速度(20 mm/s)下进行干摩擦磨损试验,研究其干滑动摩擦学性能.结果表明:富含Cr的固溶强化奥氏体、高硬度的Cr7C3和WC增强相的存在,提高了WC增强铁基堆焊层的硬度,30%WC和60%WC涂层的显微硬度达到HV0.2665和HV0.2724,比铁基涂层提高了21.1%和31.9%,是304基体的3.7和4倍;30%WC和60%WC涂层的摩擦系数和磨损率分别为0.59和2.639×10~(–6) mm~3·N~(–1)·m~(–1),0.42和1.111×10~(–6) mm~3·N~(–1)·m~(–1).30%WC和60%WC涂层均表现出优异的耐磨性能,其磨损机理分别为黏着磨损和二体磨粒磨损的混合机制,和三体磨粒磨损.  相似文献   

5.
采用粉末冶金方法制备碳纳米管-银-石墨复合材料,研究了电流密度对碳纳米管-银-石墨复合材料的接触电压降及其磨损性能的影响.结果表明:在电磨损初期接触电压降较小,随着时间延长,接触电压降上升并趋于稳定;随着电流密度增加,发热量增大,粘着磨损加剧,接触表面的接触方式发生改变,导致收缩电阻和过渡电阻减小,接触电压降略有上升;磨损量随着电流密度增加急剧增大,但与传统电刷相比已有明显改善.  相似文献   

6.
碳纳米管增强铜基复合材料的载流摩擦磨损性能研究   总被引:1,自引:1,他引:0  
采用粉末冶金方法制备了碳纳米管增强铜基复合材料(CNT/Cu),碳纳米管的体积分数分别为0%、5%、10%、12%和15%,在HST100载流摩擦磨损试验机上考察了有无电流2种状态下复合材料的摩擦磨损性能.结果表明:有电流条件下的摩擦系数和磨损率均比无电流条件下大,且表面磨损严重;载流条件下,随碳纳米管体积分数的增加,复合材料的摩擦系数和磨损率均降低,主导磨损形式由电气磨损逐渐过渡到黏着磨损.碳纳米管在复合材料中起到增强、减摩的作用.  相似文献   

7.
考察了铜-石墨复合材料和商品ZQAl9-4铝青铜材料在干摩擦条件下的室温摩擦磨损性能,得出了两者的磨损图.结果表明:铜-石墨复合材料表现出优异的减摩性能;铜-石墨材料的磨损体系可以分为轻微磨损(磨损率小于1×10-4 mm3/m)、中等磨损(1×10-4~1×10-3 mm3/m)和严重磨损(磨损率大于1×10-3 mm3/m)3个区域,而ZQAl9-4铝青铜的磨损体系可分为轻微磨损、中等磨损和咬合3个区域;在载荷小于5 N,滑动速度处于0.005~0.05 m/s时,铜-石墨复合材料表现出比铝青铜更优异的耐磨性.  相似文献   

8.
以酚醛树脂(PF)、碳纳米管(CNTs)和泡沫铜(Cu)为原料,在反应釜内经无压浸渗和加压固化技术,制得一种新型PF/CNTs-Cu复合材料.在CSM摩擦磨损仪上,对不同CNTs含量的PF/CNTs-Cu复合材料进行了载流摩擦磨损测试.结果表明:未经CNTs改性的PF/Cu复合材料,摩擦系数和磨损率均最大,摩擦表面存在大量的犁沟痕迹,表现为典型的磨粒磨损.经CNTs改性后的PF/CNTs-Cu复合材料,载流摩擦磨损性能获得较大程度的改善.当CNTs质量分数在0.25%~1.0%范围内时,随着CNTs含量的增加,摩擦系数和磨损率逐渐减小,并在质量分数为1.0%时达到最小值.摩擦磨损机制则由最初的磨粒磨损逐渐转变为黏着磨损.当CNTs达到1.5%时,由于CNTs的团聚作用,导致复合材料的摩擦磨损性能急剧下降,摩擦磨损机制转变为磨粒磨损和黏着磨损共同作用形式.  相似文献   

9.
采用内氧化法制备Al2O3/Cu复合材料,在自制电磨损试验机上评价Al2O3/Cu复合材料的磨损性能,采用扫描电子显微镜观察Al2O3/Cu复合材料的磨损表面形貌,用能谱仪对其磨损表面主要元素进行分析并探讨其磨损机制.结果表明:在相同试验条件下,Al2O3/Cu复合材料的磨损性能明显优于Cu-0.36Cr-0.06Zr合金,Cu-0.36Cr-0.06Zr合金的磨损率较0.40%Al2O3 /Cu复合材料的磨损率高1倍多;在无加载电流条件下,Al2O3/Cu复合材料的磨损机制为粘着磨损和磨粒磨损;在载流条件下其磨损机制主要以粘着磨损为主,并随着电流强度的增加,粘着磨损程度加重,Al2O3/Cu复合材料表面的粘着物主要来自于铜基粉末冶金滑块;Cu-Cr-Zr合金在无加载电流条件下的磨损机制主要为粘着磨损和磨粒磨损,在载流条件下主要为粘着磨损、磨粒磨损及电烧蚀磨损.  相似文献   

10.
本文中使用电沉积方法在铜基表面分别制备了纯银镀层和纯银/银石墨复合镀层,研究了不同温度下两种镀层的磨损性能和行为.研究表明:室温至120℃,纯银镀层磨损机理为轻微的黏着磨损,摩擦系数稳定在0.35~0.45左右,磨损率为3×10~(-14) m~3/(N·m)左右;240~480℃,镀层磨损机理为明显的黏着磨损,磨损率急剧增加,摩擦系数不稳定.纯银/银石墨复合镀层在室温至240℃的磨损机理为轻微的黏着磨损,平均摩擦系数在0.1左右,磨损率增加缓慢;当温度超过240℃时,由于抗高温石墨膜的破裂,出现了严重的塑性变形;480℃时,复合镀层磨损机理主要表现为明显的磨粒磨损,摩擦系数不稳定,磨损率达到46×10~(-14) m~3/(N·m),耐磨性优于纯银镀层.  相似文献   

11.
以微米级ZrB_2和SiC粉末为原料,采用热压烧结制备ZrB_2-SiC复相陶瓷,考察了SiC含量,摩擦对偶,速度和载荷对ZrB_2-SiC复相陶瓷摩擦磨损特性的影响.结果表明:ZrB_2-SiC复相陶瓷的摩擦系数和磨损率对SiC含量和摩擦对偶的变化较为敏感,速度和载荷变化,摩擦系数和磨损率的波动较大;以WC为对偶,速度0.1 m/s,载荷5 N时的ZrB_2-SiC复相陶瓷的平均摩擦系数和磨损率分别仅为0.4和2.41×10–4 mm3/(N·m).ZrB_2-SiC复相陶瓷的磨损机制以机械磨损为主,伴有轻微摩擦氧化,摩擦层的形成有利于摩擦系数的减小.  相似文献   

12.
采用热压烧结的方法制备了添加WS2质量百分数为10%、20%和30%的Fe-28Al-5Cr基复合材料,通过XRD和SEM等手段分析了样品的相组成和组织结构.利用自制的真空摩擦试验机测试了样品在4×10-4Pa真空下的摩擦学性能.研究结果显示:通过与WS2的复合能够显著降低Fe3Al基金属间化合物在真空条件下的摩擦系数,但三种不同WS2含量复合材料的摩擦系数差别不大.随着WS2含量增加,复合材料的磨损率逐渐降低,特别是30%复合材料的磨损率较纯Fe-28Al-5Cr的磨损率低约1个数量级.滑动速度和载荷对三种材料的摩擦系数和磨损率均有一定的影响.纯Fe3Al的磨损表面较为粗糙,出现严重的剥落坑和剥落痕迹,磨损机理为严重的疲劳磨损.添加质量百分数为10%WS2的复合材料的磨损机理为磨粒磨损和疲劳磨损;添加WS2质量百分数为20%和30%的复合材料,其磨损表面相对较为光滑平整,磨损机理为轻微剥落.因此,在复合材料制备中添加WS2能够显著提高Fe3Al金属间化合物的真空摩擦学性能.  相似文献   

13.
针对空间滑动电接触金基润滑涂层在制备方法以及失效机理认识方面存在的不足,探索采用绿色磁控溅射法制备金薄膜. 研究了偏压对薄膜微观结构、力学以及真空载流摩擦学性能的影响规律;建立了真空载流服役工况摩擦试验评价条件,可实现接触电流噪音的实时监测,进一步对比传统电镀金涂层,研究了其真空载流摩擦磨损行为差异、主要影响因素及作用机制. 结果表明:在适中的偏压下,薄膜晶粒尺寸小,结构致密光滑,具有高的结合力、硬度、耐磨性以及低的接触电流噪音. 相比于电镀法,磁控溅射法制备的金膜表现出明显光滑致密的结构特征,硬度、磨损率和接触电流噪音大幅改善. 其中光滑致密的结构是抑制微电弧产生的关键因素,可有效减少电弧侵蚀失效.   相似文献   

14.
本文中采用多弧离子镀TiN薄膜对钢基体进行表面改性与SiCH润滑油相结合的方式,研究了SiCH油/TiN薄膜复合体系的真空摩擦学性能,并分析了该复合润滑体系的摩擦磨损机理.研究表明:在SiCH油/TiN薄膜复合体系中,摩擦副对偶双方表面均采用TiN薄膜进行改性后,由于TiN薄膜具有良好的稳定性和耐磨性,与SiCH润滑油构成的复合润滑体系在长寿命摩擦试验中表现出良好的减摩抗磨性能,平均摩擦系数约0.07,在经过1.8×10~6r的摩擦试验后,尽管SiCH油中形成了微量的多甲基基团的硅碳化合物Si-[R-(CH_3)_3]_3并未影响其良好的润滑性能,表明SiCH油/TiN薄膜复合体系耐磨寿命高达1.8×10~6r以上.  相似文献   

15.
Ti3SiC2、不锈钢和NiCr合金在人工海水中的摩擦学性能   总被引:2,自引:0,他引:2  
在SRV-1型摩擦磨损试验机上考察了Ti3SiC2、NiCr合金和不锈钢在干摩擦、蒸馏水和人工海水中的摩擦磨损性能,并用扫描电镜(SEM-EDS)及光电子能谱(XPS)对磨痕形貌及成分进行分析.结果表明:Ti3SiC2/Al2O3摩擦副的摩擦系数对摩擦条件变化不敏感,在液体介质中磨损稍有降低.3种摩擦条件下存在机械磨损和摩擦氧化磨损竞争,但机械磨损始终为主要磨损机制,因此摩擦和磨损较大.不锈钢/Al2O3和NiCr合金/Al2O3两摩擦副对摩擦条件变化较敏感,摩擦系数和磨损率在于摩擦、蒸馏水和海水中依次降低,其中NiCr合金降低幅度最大.干摩擦条件下两者以机械磨损为主要磨损机制,表现为黏着磨损和材料转移;蒸馏水中机械磨损和摩擦氧化磨损并存;海水中以腐蚀磨损为主导,腐蚀产物FeCl2、CrCl3或CrO22-或CrO2-等具有减摩抗磨作用.  相似文献   

16.
MoS2/SiCH固液复合润滑体系摩擦学性能研究   总被引:2,自引:0,他引:2  
本文中通过考察MoS_2薄膜/SiCH固液复合润滑体系的真空摩擦学性能,探究了该复合润滑体系的摩擦磨损机理.研究表明射频溅射MoS_2薄膜表面所固有的柱状晶体结构具有明显的润滑油吸附功能,提高了MoS_2薄膜/SiCH固液复合润滑体系的真空摩擦学性能.球盘摩擦试验结果表明:当仅对钢盘表面沉积MoS_2薄膜时,该固液复合润滑体系的滑动摩擦寿命达到1.86×106 r,为采用SiCH油润滑时摩擦寿命的1.2倍,是MoS_2薄膜固体润滑状态的4倍,表现出了良好的协同润滑效应.  相似文献   

17.
通过对炭/炭坯体Mo_2C涂层改性并熔渗Cu制备了Mo_2C改性C/C-Cu复合材料,测试复合材料的载流摩擦磨损性能,研究电流强度对复合材料载流摩擦磨损性能的影响.结果表明电流由0增大至15A时,摩擦系数先减小后增大,5A时达最小值;复合材料体积磨损率逐渐增大;对偶磨损量在0~7.5A范围内较低,然后随电流增大而逐渐增大.电流较低时,磨损机制以磨粒磨损为主,随电流增大氧化磨损及黏着磨损程度提高,电流高至15A时,表现出了较明显的电弧侵蚀作用.  相似文献   

18.
偏压对CrN涂层结构与海水环境摩擦学行为的影响   总被引:2,自引:0,他引:2  
利用多弧离子镀技术在M2高速钢和p(100)单晶硅片上用不同偏压条件分别制备了4种CrN涂层,考察了涂层的显微结构、力学性能、海水环境中的电化学特性与摩擦学行为,分析了涂层的裂纹形貌与断裂机制.结果显示:交替偏压下制备的多层CrN涂层内部结构致密且硬度与择优取向梯度变化,具有高的膜基结合力(Lc大于150 N),较小的平均晶粒尺寸(70 nm),较高的自腐蚀电位(-0.234 V)和较低的自腐蚀电流(3.052×10-8A).在海水环境中与直径为3 mm的YG-6(94%WC+6%Co)硬质合金球配副,Hertzian接触应力达到3.47 GPa时,平均摩擦系数低于0.15,磨损率低于1.26×10-15m3/(Nm),磨痕内没有明显的涂层崩裂失效,耐磨损性能明显优于其余3种CrN涂层.  相似文献   

19.
Si过渡层类金刚石薄膜界面优化及其性能研究   总被引:1,自引:0,他引:1  
本文中利用等离子体化学气相沉积法,制备了具有Si过渡层的DLC薄膜.利用俄歇深度分析的方法,研究了Si过渡层沉积条件如电压、气压和气源对Si过渡层的影响;利用薄膜应力分布测试仪和划痕仪,研究了不同沉积条件下制备的Si过渡层对类金刚石薄膜内应力和附着力特性的影响;利用摩擦磨损仪,分析比较了薄膜的摩擦性能.研究表明:DLC薄膜与基底之间形成(Fe+Si+O混合层)/Si/(Si+C混合层)过渡层.过渡层制备过程中,气压、电压和Ar/Si H4比例升高,会导致过渡层中Si层厚度的减小.这种过渡层在一定范围内提高了DLC薄膜与基体之间的结合力,缓解了因薄膜与基底间不匹配而产生的应力.在大气环境下,优化的DLC薄膜与GCr 15钢对偶的摩擦系数及磨损率可低至0.02和8.2×10-14m3/(N·m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号