首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
胡舒合  熊怀陆 《应用数学》1994,7(1):107-111
对多元密度函数的最近邻估计和核估计,在样本为不混合的场合下,本文获得了它们的渐近正态性。  相似文献   

2.
最近邻回归估计的渐近正态性   总被引:4,自引:0,他引:4  
本文研究了最近邻估计问题,在适当条件下证明了它的渐近正态性。  相似文献   

3.
独立样本最近邻密度估计的强相合速度   总被引:2,自引:0,他引:2  
设X,X2,…,Xn是独立同分布样本,具有共同的密度函数f(x),在f(x)满足适当的条件下给出最近邻密度估计的强相合收敛速度,其速度可达到O(n^-1/3(olgn)^1/3。  相似文献   

4.
强混合样本下回归加权估计的一致渐近正态性   总被引:5,自引:0,他引:5  
杨善朝  李永明 《数学学报》2006,49(5):1163-117
在强混合样本下,讨论固定设计回归模型的加权函数估计的一致渐近正态性,给出一致渐近正态性的收敛速度,这个速度接近n-1/6.  相似文献   

5.
NA样本最近邻密度估计的相合性   总被引:6,自引:0,他引:6  
在NA样本下研究最近邻密度估计的相合性,给出弱相合性、强相合性、一致强相合性以及它们的收敛速度的充分条件.同时研究了失效率函数估计的一致强相合性  相似文献   

6.
本文研究负超可加相依样本的最近邻密度估计强相合性.利用负超可加相依序列的不等式与性质,获得最近邻密度估计的弱相合性、强相合性和一致强相合性.  相似文献   

7.
兰冲锋  吴群英 《数学杂志》2015,35(3):665-671
本文研究了扩展负相依(END)样本最近邻密度估计的强相合性问题.利用END序列的Bernstein型不等式和截尾的方法,获得了END样本最近邻密度估计的强相合速度,推广了NA样本和ND样本最近邻密度估计的相应结果.  相似文献   

8.
设{Xi)i=1^∞是一维平稳序列,具有公共的未知密度f(x),在{Xi}i=1^∞是α-混合的条件下,给出了f(x)基于前礼个观测值{Xi}i=1^∞的最近邻密度估计的强相合收敛速度,当f(x)满足适当条件,收敛速度可达到0(n^-1/3(ln n)^4(1+p)/3)).  相似文献   

9.
设随机变量 X具有概率密度函数 f (x) ,X1,… ,Xn为 f (x)的样本 ,基于 X1,… ,Xn定义一类 f (x)的估计 fn(x) .本文在 X1,… ,Xn为 α——混合、ρ——混合样本时 ,得到了 fn(x)的渐近正态性  相似文献   

10.
文中设{(Xn,Yn):n≥}为严平稳ρ-相依随机变量列,出于稳健角度,给出了Y关于X回归中位L1-模估计θh(y│x),在适当条件下证明了θh(y│x)的渐近正态性。  相似文献   

11.
Asymptotic Normality of Kernel Density Estimators under Dependence   总被引:4,自引:0,他引:4  
In this paper, we study the kernel methods for density estimation of stationary samples under generalized conditions, which unify both the linear and -mixing processes discussed in the literature and also adapt to the non-linear or/and non--mixing processes. Under general, mild conditions, the kernel density estimators are shown to be asymptotically normal. Some specific theorems are derived within various contexts, and their applications and relationship with the relevant references are considered. It is interesting that the conditions on the bandwidth may be very simple, even in the generalized context. The stationary sequences discussed cover a large number of (linear or nonlinear) time series and econometric models (such as the ARMA processes with ARCH errors).  相似文献   

12.
在平稳NA样本下,讨论了未知密度函数估计的一致渐近正态性.在适当的条件下给出了该密度函数估计一致渐近正态性的收敛速度.这个速度几乎达到n^{-1/6}  相似文献   

13.
设$\{X_n,n\geq 1\}$是一个严平稳的负相协的随机变量序列, 其概率密度函数为$f(x)$.本文讨论了$f(x)$的递归核估计量的联合渐近正态性.  相似文献   

14.
Wu  Yi  Wang  Xue Jun 《数学学报(英文版)》2019,35(5):703-720
In this paper, we mainly study the consistency of the nearest neighbor estimator of the density function based on asymptotically almost negatively associated samples. The weak consistency,strong consistency, uniformly strong consistency and the convergence rates are established under some mild conditions. As applications, we further investigate the strong consistency and the rate of strong consistency for hazard rate function estimator.  相似文献   

15.
设(X,Y)是一随机向量且变量Y的均值存在.假定Y被另一分布G的随机变量t删失,仅能观察到不完全数据(xi,Yi^ti,δi),i=1,2,…n,其中Yi^ti=min(Yi,Ti),δi=I(Yi≤ti)。为了给出回归函数m(x)=E(Y|X)的估计。文中使用了Stute提出的最近邻型回归估计,并给出了该估计的强相合性结果.  相似文献   

16.
Kernel type density estimators are studied for random fields. It is proved that the estimators are asymptotically normal if the set of locations of observations become more and more dense in an increasing sequence of domains. It turns out that in our setting the covariance structure of the limiting normal distribution can be a combination of those of the continuous parameter and the discrete parameter cases. The proof is based on a new central limit theorem for α-mixing random fields. Simulation results support our theorems. Final version 29 October 2004  相似文献   

17.
本文基于近邻方法下,构造了连续型单参数指数族参数的经验Bayes(EB)检验函数,在适当的条件下证明了所提出的经验Bayes检验函数的大样本性质.  相似文献   

18.
证明了相协样本下密度函数的核估计在有限个不同点上的联合渐近分布为多维正态分布.  相似文献   

19.
Mixed interval-censored (MIC) data consist of n intervals with endpoints L i and R i , i = 1, ..., n. At least one of them is a singleton set and one is a finite non-singleton interval. The survival time X i is only known to lie between L i and R i , i = 1, 2, ..., n. Peto (1973, Applied Statistics, 22, 86–91) and Turnbull (1976, J. Roy. Statist. Soc. Ser. B, 38, 290–295) obtained, respectively, the generalized MLE (GMLE) and the self-consistent estimator (SCE) of the distribution function of X with MIC data. In this paper, we introduce a model for MIC data and establish strong consistency, asymptotic normality and asymptotic efficiency of the SCE and GMLE with MIC data under this model with mild conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号