首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
基于MapReduce并行的Apriori算法改进研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于MapReduce实现的Apriori简单并行算法,产生了大量值为1的键/值对,影响了算法效率.提出一种分组统计策略的Apriori并行算法,有效地减少了键/值对的产生.实验结果表明,改进的基于MapReduce并行的Apriori算法在时间性能上有了很大的提升,并且随着集群节点的增加,算法的加速比线性提高.  相似文献   

2.
在传统的并行编程模型中,对大量数据如何进行并行计算、如何为每个任务分发数据、如何处理单点故障等问题,都需要大量的程序分析和设计,这些问题的有效处理都需要程序员显式地使用有关技术来解决.对于程序员来说,这是一项具有极大困难的工作,使得原本简单的运算反而变得非常复杂,这些问题的存在也在一定程度上制约了并行程序的普及.而MapReduce计算模型能有效地解决上述问题,阐述了Google的MapReduce计算模型的实现机制,并通过实例描述了该模型的执行过程.  相似文献   

3.
在传统的并行编程模型中,对大量数据如何进行并行计算、如何为每个任务分发数据、如何处理单点故障等问题,都需要大量的程序分析和设计,这些问题的有效处理都需要程序员显式地使用有关技术来解决.对于程序员来说,这是一项具有极大困难的工作,使得原本简单的运算反而变得非常复杂,这些问题的存在也在一定程度上制约了并行程序的普及.而MapReduce计算模型能有效地解决上述问题,阐述了Google的MapReduce计算模型的实现机制,并通过实例描述了该模型的执行过程.  相似文献   

4.
针对潜在狄利克雷分析(LDA)模型分析大规模文档集或语料库中潜藏的主题信息计算时间较长问题,提出基于MapReduce架构的并行LDA主题模型建立方法.利用分布式编程模型研究了LDA主题模型建立方法的并行化实现.通过Hadoop并行计算平台进行实验的结果表明,该方法在处理大规模文本时,能获得接近线性的加速比,对主题模型的建立效果也有提高.   相似文献   

5.
随着现有数据体量的迅速增长,超大规模中高维数据集的聚类问题变得越来越重要;而现有的子空间聚类算法大多是单机串行执行,处理此类问题效率极低。讨论了利用MapReduce对这类数据集进行并行聚类的方法,提出了基于MapReduce的抽样-忽略子空间聚类算法(sample-ignore subspace clustering using MapReduce,SISCMR)。该算法将串行聚类算法用作插件,具有很好的通用性。在人造和真实数据集上进行了大量实验,其中最大为0.2 TB的数据集在128个核心的集群中仅用不到10 min就完成了聚类,验证了该算法良好的聚类质量、近线性的可扩展性和高效的聚类性能,证明了基于MapReduce的并行聚类的可行性。  相似文献   

6.
云计算技术是海量数据挖掘的一种高效解决方案,将MapReduce并行计算模型与粗糙集属性约简算法相结合,提出一种基于MapReduce的浓缩布尔矩阵并行属性约简算法.该算法提高了粗糙集属性约简算法对大数据的处理能力和效率,并能适应云计算环境.实验结果表明,所提算法具有良好的效率、加速比和可扩展性.  相似文献   

7.
利用MapReduce编程模型的简化性和期望最大化算法(Expectation maximization,EM)的高精度、恒收敛性,提出了一种对数据集规模无限制的数据处理算法;并通过对高斯混合模型的参数估计进行算法性能的测试。结果表明,算法能改善传统EM算法在处理大规模数据集时效率低的缺点,具有较好的加速比及可扩展性。  相似文献   

8.
提出一种MapReduce并行计算模型下基于R树索引的Skyline查询算法, 解决了海量空间数据集下执行Skyline查询效率低的问题. 通过建立R树索引实现空间数据不同粒度的范围剪枝, 有效降低了分布式Skyline查询需扫描的数据规模, 提高了在MapReduce模型下Skyline查询的执行效率. 在不同数据分布下进行对比实验的结果表明, 该方法比已有算法在执行效率上更具优势.  相似文献   

9.
大数据时代带来数据处理模式的变革,依托Hadoop分布式编程框架处理大数据问题是当前该领域的研究热点之一。为解决海量数据挖掘中的分类问题,提出基于一种双度量中心索引KNN分类算法。该算法在针对存在类别域的交叉或重叠较多的大数据,先对训练集进行中心点的确定,通过计算分类集与训练集中心点的欧式距离,确定最相似的3个类别,然后以余弦距离为度量,通过索引选择找出K个近邻点,经过MapReduce编程框架对KNN并行计算加以实现。最后在UCI数据库进行比较验证,结果表明提出的并行化改进算法在准确率略有提高的基础上,运算效率得到了极大提高。  相似文献   

10.
基于MapReduce的中文词性标注CRF模型并行化训练研究   总被引:1,自引:0,他引:1  
针对条件随机场模型面对大规模数据传统训练算法单机处理性能不高的问题, 提出一种基于MapReduce框架的条件随机场模型训练并行化方法, 设计了条件随机场模型特征提取及参数估计的并行算法, 实现了迭代缩放算法的并行。实验表明, 所提出的并行化方法在保证训练结果正确性的同时, 大大减少了训练时间, 效率得到较大提升。  相似文献   

11.
为了发现论坛数据中感兴趣的话题并对话题进行演化跟踪,文中首先利用潜在狄利克雷分配(LDA)模型将文本由词汇空间降维到主题空间,然后采用聚类算法在主题空间对文本集进行聚类,并利用文中提出的热点话题检测方法得出热点话题. 基于发现的热点话题,文中提出了基于在线 LDA(OLDA)话题模型的论坛热点话题演化跟踪模型(HTOLDA),该模型只选择热点话题进行先验传递,并通过设置同一话题相邻时间片的语义距离来判断话题的状态. 实验结果表明,HTOLDA 模型对各个时间片的论坛数据集的建模能力优于 OLDA 模型,并能够有效地对论坛中的热点话题进行演化跟踪.  相似文献   

12.
LDA可以实现大量数据集合中潜在主题的挖掘与文本信息的分类,模型假设,如果文档与某主题相关,那么文档中的所有单词都与该主题相关.然而,在面对实际环境中大规模的数据,这会导致主题范围的扩大,不能对主题单词的潜在语义进行准确定位,限制了模型的鲁棒性和有效性.本文针对LDA的这一弊端提出了新的文档主题分类算法gLDA,该模型通过增加主题类别分布参数确定主题的产生范围,提高分类的准确性.Reuters-21578数据集与复旦大学文本语料库中的数据结果证明,相对于传统的主题分类模型,该模型的分类效果得到了一定程度的提高.  相似文献   

13.
基于主题模型的中文词义归纳   总被引:1,自引:0,他引:1  
词义归纳是在给定包含多义词语料的条件下,识别出多义词词义的过程,通常是采用聚类的方法.本文提出了基于主题模型的方法来解决中文词义归纳问题,基于主题模型的词义归纳方法关键之处在于使用文档的主题概率分布来推断多义词的词义分布.实验结果表明,本文方法在测试数据上获得了77.58%FScore值.  相似文献   

14.
针对LDA(Latent Dirichlet Allocation)主题模型生成的大量topic,很大部分topic内部词语相关度很低,可解释性差,对语言模型后的应用效果带来一定的影响.针对这一问题,该文提出了一种基于主题加权LDA模型的情感分类方法,该模型实现不同主题中内部相关的词语特征加权计算,能够消除不同主题内具有相关度词语的相互影响.实验结果表明,与传统LDA模型分类方法对比,该文提出的基于主题加权LDA模型的情感分类方法平均F1值提高了6.7%~8.1%,验证了该文提出的方法是有效的,提高了分类效果.  相似文献   

15.
一种改进的LDA主题模型   总被引:2,自引:0,他引:2  
由于文档中的词符合幂律分布,使得LDA模型的主题分布向高频词倾斜,导致能够代表主题的多数词被少量的高频词淹没使得主题表达能力降低.通过一种高斯函数对特征词加权,改进LDA主题模型的主题分布.实验显示加权LDA模型获得的主题间的相关性以及复杂度(Perplexity)值都降低,说明改进模型在主题表达和预测性能方面都有所提高.  相似文献   

16.
针对基于语料库统计的词语相似度计算方法存在的一些缺陷,如:计算量大、向量的特征维度高、特征稀疏、忽略了词语的语义信息等,提出了一种基于latent Dirichlet allocation(LDA)的词语相似度计算方法,通过将词语的特征向量映射为词语的主题分布来计算词语间的相似度;通过与基于《知网》的词语相似度计算方法的对比,证明了该方法能有效降低特征维度,并具有较好的词语相似度计算效果。  相似文献   

17.
LDA主题模型是一种有效的文本语义信息提取工具,利用在文档层中实现词项的共现,将词项矩阵转化为主题矩阵,得到主题特征;然而在生成文档过程中会蕴含冗余主题。针对LDA主题模型提取主题特征时存在冗余的不足,提出一种基于邻域粗糙集的LDA主题模型约简算法NRS-LDA。利用邻域粗糙集构造主题决策系统,通过预先设定主题个数,计算出每个主题的重要度;根据重要度进行排序,将排序后重要度低的主题删除。将提出的NRS-LDA算法应用于K-means文本聚类问题上并与传统的文本特征提取算法及改进的算法进行比较,结果表明NRS-LDA方法可以得到更高的聚类精度。  相似文献   

18.
随着智能终端的普及,文本的主题挖掘需求也越来越广泛,主题建模是文本主题挖掘的核心,LDA生成模型是基于贝叶斯框架的概率模型,它以语义关联为基础,很好地解决了文本潜在主题的提取问题。对文本聚类过程的核心技术LDA生成模型、数据采样、模型评价等作了较为深入的阐述和解析,结合网络教育平台的2 794篇学习刊物进行了主题发现和聚类实验,建立了包含3 800个词项的词库,通过kmeans算法和合并向量算法(UVM)分两步解决了主题聚类问题。提出了文本挖掘实验的一般方法,并对层次聚类中文本距离的算法提出了改进。实验结果表明,该平台刊物的主题整体相似度比较好,但主题过于集中使得许多刊物的内容不具有辨识度,影响用户对主题的定位。  相似文献   

19.
通过主题模型与语义网络对旅游电商中的评论文本进行挖掘,从而引导消费者与商家对评论信息作出重要决策;提出一种基于LDA(Latent Dirichlet Allocation,LDA)主题聚类与语义网络模型(LDA topic clustering and semantic network model,LTC-SNM)的方法对酒店在线评论文本进行研究;获取在线评论文本进行数据预处理,使用Word2vec生成词向量,利用机器学习算法对评论文本进行情感分类;通过LDA主题模型对分类后的文本进行聚类,生成酒店的特征主题词;通过ROSTCM将特征主题词与所修饰的情感词生成语义网络,缓解了挖掘文本信息的复杂性;实验结果表明:提出的LTC-SNM文本挖掘方法使得在线用户评价的主题更具表达性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号