首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tire/terrain interaction has been an important research topic in terramechanics. For off-road vehicle design, good tire mobility and little compaction on terrain are always strongly desired. These two issues were always investigated based on empirical approaches or testing methods. Finite element modeling of tire/terrain interaction seems a good approach, but the capability of the finite element has not well demonstrated. In this paper, the fundamental formulations on modeling soil compaction and tire mobility issues are further introduced. The Drucker-Prager/Cap model implemented in ABAQUS is used to model the soil compaction. A user subroutine for finite strain hyperelasticity model is developed to model nearly incompressible rubber material for tire. In order to predict transient spatial density, large deformation finite element formulation is used to capture the configuration change, which combines with soil elastoplastic model to calculate the transient spatial density due to tire compaction on terrain. Representative simulations are provided to demonstrate how the tire/terrain interaction model can be used to predict soil compaction and tire mobility in the field of terramechanics.  相似文献   

2.
The three-dimensional finite-discrete element method (FEM/DEM) is applied to the simulation of tire-sand interactions, where the tire is discretized into hexahedron finite elements and sand is modeled by using the discrete element method. The feasibility and effectiveness of the method are proven by comparing the simulation results with the current reported results. Since long test roads are usually required for investigating tire running behaviors, which lead to large-scale simulation models and time consuming problems, the alternately moving road method is proposed to handle this problem. It can simulate tire running behaviors on an arbitrary length sand road with a constant road length value. The numerical model of a lug tire running on a bisectional road with fine and coarse sand is established to verify the feasibility of the method.  相似文献   

3.
Tire durability plays an important role in road transportation safety and is taken very seriously by all tire manufacturers. Defects in tires can cause vehicle instability and create catastrophic accidents. In this article, a finite element model of the intelligent tire is developed using implicit dynamic analysis and is used for defect detection. Processing and analyzing the acceleration signals, measured at the center of the tire inner-liner, for the undamaged and damaged tires, can result in detecting the crack locations around the tire circumference. Additionally, prediction models used for damage diagnosis based on optimized number and location of sensors, was developed. Several sensors located at different locations around the circumference of the damaged tire and away from the crack surface, are used in order to assess sensor location sensitivity from the crack surface. It is observed that the radial component of the acceleration signal has the highest potential to be used as the signal of choice in defect detection as compared to circumferential acceleration signals.  相似文献   

4.
In the present study, the effect of vertical load, tire inflation pressure and soil moisture content on power loss in tire under controlled soil bin conditions were investigated. Also a finite element model of tire-soil interaction in order to achieve a suitable model for predicting power loss in tire was created. Increasing the vertical load on the tire had a noteworthy impact on increasing the tire contact volume with the soil, reducing the percentage of slip, and increasing the rolling resistance; although, reducing the load on the tire had the opposite effect. At a constant inflation pressure, by increasing the vertical load on the tire, the amount of power loss due to the rolling resistance and the total power loss in the tire increased. Increase in soil moisture content increased the power loss caused by slip. Increasing the inflation pressure at a constant vertical load, also increasing the soil moisture content, led to an increase in the power loss caused by rolling resistance, and increase total power loss. The obtained error for estimating power loss of rolling resistance and total power loss was satisfactory and confirmed the acceptability of the model for power loss estimation.  相似文献   

5.
载重子午线轮胎三维非线性有限元分析   总被引:2,自引:0,他引:2  
建立了一个轮胎结构有限元分析模型,考虑了轮胎变形的几何非线性,轮胎与地面和轮胎与轮辋的大变形非线性接触,轮胎材料的非均匀性,橡胶材料的不可压缩性和物理非线性及橡胶基复合材料的各向异性。结果表明,该模型有效可靠。  相似文献   

6.
In this paper the problem of impulsively started aerofoil or suden change of incidence of an aerofoil in incompressible potential flow is investigated. The essence of solution lies in the representation of a timely and spatially varying wake in a largely irrotational potential flow field. This is achieved by representing the wake through velocity potential difference, which seems to be the only way of imposing a velocity difference condition in the finite element context with velocity potentials as the basic unknowns. Superposition is employed to meet various boundary conditions, which is justified by the linearity of the problem. The finite element solutions are compared with those from singularity method.  相似文献   

7.
A finite volume numerical method for the prediction of fluid flow and heat transfer in simple geometries was parallelized using a domain decomposition approach. The method is implicit, uses a colocated arrangement of variables and is based on the SIMPLE algorithm for pressure-velocity coupling. Discretization is based on second-order central difference approximations. The algebraic equation systems are solved by the ILU method of Stone.1 To accelerate the convergence, a multigrid technique was used. The efficiency was examined on three different parallel computers for laminar flow in a pipe with an orifice and natural convection in a closed cavity. It is shown that the total efficiency is made up of three major factors: numerical efficiency, parallel efficiency and load-balancing efficiency. The first two factors were thoroughly investigated, and a model for predicting the parallel efficiency on various computers is presented. Test calculations indicate reasonable total efficiency and favourable dependence on grid size and the number of processors.  相似文献   

8.
A finite element formulation to solve the Ekman potential flow model for wind fields over complex terrain is presented. Appropriate combinations of the boundary conditions on the artificial boundary surfaces are investigated in the formulation. Numerical examples show that the computed wind fields exhibit the typical features of the wind velocity profile in the Ekman boundary layer. Influence of the terrain topography is also observed.  相似文献   

9.
A finite element technique is presented and applied to some one- and two-dimensional turbulent flow problems. The basic equations are the Reynolds averaged momentum equations in conjunction with a two-equation (k, ?) turbulence model. The equations are written in time-dependent form and stationary problems are solved by a time iteration procedure. The advection parts of the equations are treated by the use of a method of characteristics, while the continuity requirement is satisfied by a penalty function approach. The general numerical formulation is based on Galerkin's method. Computational results are presented for one-dimensional steady-state and oscillatory channel flow problems and for steady-state flow over a two-dimensional backward-facing step.  相似文献   

10.
This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.  相似文献   

11.
A mixed Lagrange finite element technique is used to solve the Maxwell equations in the magneto-hydrodynamic (MHD) limit in an hybrid domain composed of vacuum and conducting regions. The originality of the approach is that no artificial boundary condition is enforced at the interface between the conducting and the insulating regions and the non-conducting medium is not approximated by a weakly conducting medium as is frequently done in the literature. As a first evaluation of the performance of the method, we study two-dimensional (2D) configurations, where the flow streamlines of the conducting fluid are planar, i.e., invariant in one direction, and either the magnetic field (“magnetic scalar” case) or the electric field (“electric scalar” case) is parallel to the invariant direction. Induction heating, eddy current generation, and magnetic field stretching are investigated showing the usefulness of finite element methods to solve magneto-dynamical problems with complex insulating boundaries.  相似文献   

12.
Modeling and visualization of a rainwater overland flow is an important tool for a risk assessment, preparation, evacuation planning, and real‐time forecasting of flood warning. The objective of this research is to develop a numerical software to visualize the rainwater overland flow based on a finite volume method for shallow water equations and in combination with the dynamically adaptive tree grid technique and the dynamic domain‐defining method. The obtained simulations for several experiments were tested and compared with results in literature, both theoretical and experimental results. The comparisons with non‐adaptive grids show that the developed algorithm for simulation is very efficient and has a potential for practical usages, in terms of computational times and accuracy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Agricultural tire deformation in the 2D case by finite element methods   总被引:1,自引:0,他引:1  
The mechanical characteristics of the rubber tire and the interaction between a tire and a rigid surface were investigated by a two-dimensional (2D) finite element (FE) model. The FE model consists of a rigid rim and a rigid contact surface which interact with the elastic tire. Four distinct sets of elastic parameters are used to represent beads, sidewall, tread and lugs. Several sets of tire loads and inflation pressures were applied to the FE model as boundary conditions, together with various displacements and friction conditions. The deformation of the tire profile, the tire displacements in the vertical and lateral directions, the normal contact pressures, the frictional forces and the stress distribution of the tire components were investigated by the 2D FE model under the above boundary conditions. The calculated tire deflections were compared with the measured data. The results show a good fit between calculated and measured data, especially at high load and inflation pressure. The comparison shows that the FE analysis is suitable to predict aspects of the tire performance like its deflection and interactions with the contact surface. Compared with the experimental methods, the FE methods show many advantages in the prediction of tire deformation, contact pressure and stress distribution.  相似文献   

14.
Transient dynamic response of a rolling tire impacting with a small cleat is analyzed by an explicit finite element method. A 3-D tire model considering detailed tread blocks is used to accurately simulate the local tire-cleat impact process. The frictional dynamic contact problem is formulated by making use of total Lagrangian scheme and the penalty method. By imposing mass-proportional damping to only the tire parts showing the significant lateral deformation, the dynamic viscosity effect is artificially reflected. Time-history and frequency responses of the dynamic forces exerted on the tire axis are numerically predicted and assessed through the comparison with experimental results. As well as, the effects of the tire rolling speed and the inflation pressure on the transient dynamic response are parametrically investigated.  相似文献   

15.
When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.  相似文献   

16.
A finite difference technique has been developed to study the Newtonian jet swell problem. The streamfunction and vorticity were used as dependent variables to describe the jet flow. The boundary-fitted co-ordinate transformation method was adopted to map the flow geometry into a rectangular domain. The standard finite difference method was then applied for solving the flow equations. The location of the jet free surface was updated by the kinematic boundary condition, and an adjustable parameter was included in the free-surface iteration. We could obtain numerical solutions for the Reynolds number as high as 100, and the differences between the present study and previous finite element simulations on the jet swell ratio are less than 5%.  相似文献   

17.
Velocity–pressure integrated and consistent penalty finite element computations of high-Reynolds-number laminar flows are presented. In both methods the pressure has been interpolated using linear shape functions for a triangular element which is contained inside the biquadratic flow element. It has been shown previously that the pressure interpolation method, when used in conjunction with the velocity-pressure integrated method, yields accurate computational results for high-Reynolds-number flows. It is shown in this paper that use of the same pressure interpolation method in the consistent penalty finite element method yields computational results which are comparable to those of the velocity–pressure integrated method for both the velocity and the pressure fields. Accuracy of the two finite element methods has been demonstrated by comparing the computational results with available experimental data and/or fine grid finite difference computational results. Advantages and disadvantages of the two finite element methods are discussed on the basis of accuracy and convergence nature. Example problems considered include a lid-driven cavity flow of Reynolds number 10 000, a laminar backward-facing step flow and a laminar flow through a nest of cylinders.  相似文献   

18.
This paper presents a novel modelling technique to compute the interaction between an 8x4 off-road truck and gravelly soil (sand with gravel soil). The off-road truck tire size 315/80R22.5 is modelled using the Finite Element Analysis (FEA) technique and validated using manufacturer-provided data in static and dynamic responses. The gravelly soil is modelled using Smoothed-Particle Hydrodynamics (SPH) technique and calibrated against physical measurements using pressure-sinkage and direct shear-strength tests. The tire-gravelly soil interaction is captured using the node symmetric node to segment with edge treatment algorithm deployed for interaction between FEA and SPH elements. The model setup consists of four tires presenting the four axles of the truck, the first tire is a free-rolling steering tire, the second and third tires are driven tires and the fourth tire is a free-rolling push tire. The truck tires-gravelly soil interaction is computed and validated against physical measurements performed in Göteborg, Sweden. The effect of gravelly soil compaction and truck loading on the tire performance is discussed and investigated.  相似文献   

19.
Direct numerical simulations (DNS) are used to study the motion and deformation of leukocytes in pressure driven flows in parallel plate channels. The influence of the adhesion force between the leukocytes and the channel wall on such motion and deformation is also investigated. Leukocytes are represented by two composite fluid models, consisting of a membrane, a cytoplasm and a nucleus. The adhesion force is computed using two adhesion force models. In the first model, the adhesion force is given by a potential, and in the second one it is given by Dembo’s kinetic adhesion model. The numerical code is based on the finite element method and the level set technique is used to track the cell membrane position. In the absence of the adhesion force, the leukocyte moves away from the wall to an equilibrium location that depends on the ratio of the cell to plasma viscosities. In presence of the adhesion force, the leukocyte is attracted to the layer of endothelial cells and, as it gets closer, it flattens under the action of hydrodynamic forces. This deformation, in turn, further increases the adhesion force. The leukocyte, however, can be captured only when it is placed sufficiently close to the wall, which for the kinetic model is of the order of 30 nm. We also find that for the normal parameter values and flow rates the adhesive force given by the kinetic model is too small to capture the leukocyte.  相似文献   

20.
The present article treats two objectives. In the first investigation attention is focused on the application of time-adaptive finite elements formulated on the basis of a high-order time integration procedure on a constitutive model for compressible finite strain viscoplasticity for metal powder. In this connection, it has to be emphasized that the integration procedure is not only applied to the evolution equations on Gauss-point level but on the total system of differential–algebraic equations resulting from the application of the vertical line method on the quasi-static finite element equations. The specific application emerges from the field of metal powder compaction. Particular studies are carried out using stiffly accurate, diagonally implicit Runge–Kutta methods in combination with the Multilevel-Newton algorithm for solving the DAE-system. In this respect, the effort vs. accuracy behavior is investigated which is also related to order reduction known in elastoplasticity. The second topic treats the local stress algorithm for taking into account the yield function based finite strain viscoplasticity model, where the classical Newton–Raphson method fails. This is the reason why most constitutive models of powder materials are implemented into explicit finite element codes. Thus, the proposed investigations compare different methods in view of a stable and efficient integration process in implicit finite element formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号