首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A caterpillar graph is a tree in which the removal of all pendant vertices results in a chordless path. In this work, we determine the number of maximal independent sets (mis) in caterpillar graphs. For a general graph, this problem is #Pcomplete. We provide a polynomial time algorithm to generate the whole family of mis in a caterpillar graph. We also characterize the independent graph (intersection graph of mis) and the clique graph (intersection graph of cliques) of complete caterpillar graphs.  相似文献   

2.
Zemin Jin 《Discrete Mathematics》2008,308(23):5864-5870
Let G be a simple undirected graph. Denote by (respectively, xi(G)) the number of maximal (respectively, maximum) independent sets in G. Erd?s and Moser raised the problem of determining the maximum value of among all graphs of order n and the extremal graphs achieving this maximum value. This problem was solved by Moon and Moser. Then it was studied for many special classes of graphs, including trees, forests, bipartite graphs, connected graphs, (connected) triangle-free graphs, (connected) graphs with at most one cycle, and recently, (connected) graphs with at most r cycles. In this paper we determine the second largest value of and xi(G) among all graphs of order n. Moreover, the extremal graphs achieving these values are also determined.  相似文献   

3.
A maximal independent set is an independent set that is not a proper subset of any other independent set. In this paper, we determine the second largest number of maximal independent sets among all trees and forests of order n≥4. We also characterize those extremal graphs achieving these values.  相似文献   

4.
We study two central problems of algorithmic graph theory: finding maximum and minimum maximal independent sets. Both problems are known to be NP-hard in general. Moreover, they remain NP-hard in many special classes of graphs. For instance, the problem of finding minimum maximal independent sets has been recently proven to be NP-hard in the class of so-called (1,2)-polar graphs. On the other hand, both problems can be solved in polynomial time for (1,1)-polar, also known as split graphs. In this paper, we address the question of distinguishing new classes of graphs admitting polynomial-time solutions for the two problems in question. To this end, we extend the hierarchy of (α,β)-polar graphs and study the computational complexity of the problems on polar graphs of special types.  相似文献   

5.
We give tight upper bounds on the number of maximal independent sets of size k (and at least k and at most k) in graphs with n vertices. As an application of the proof, we construct improved algorithms for graph colouring and computing the chromatic number of a graph.  相似文献   

6.
Let G be a finite simple graph. For X?V(G), the difference of X, d(X)?|X|?|N(X)| where N(X) is the neighborhood of X and max{d(X):X?V(G)} is called the critical difference of G. X is called a critical set if d(X) equals the critical difference and ker(G) is the intersection of all critical sets. diadem(G) is the union of all critical independent sets. An independent set S is an inclusion minimal set withd(S)>0 if no proper subset of S has positive difference.A graph G is called a König–Egerváry graph if the sum of its independence number α(G) and matching number μ(G) equals |V(G)|.In this paper, we prove a conjecture which states that for any graph the number of inclusion minimal independent set S with d(S)>0 is at least the critical difference of the graph.We also give a new short proof of the inequality |ker(G)|+|diadem(G)|2α(G).A characterization of unicyclic non-König–Egerváry graphs is also presented and a conjecture which states that for such a graph G, the critical difference equals α(G)?μ(G), is proved.We also make an observation about ker(G) using Edmonds–Gallai Structure Theorem as a concluding remark.  相似文献   

7.
Two continuous formulations of the maximum independent set problem on a graph G=(V,E) are considered. Both cases involve the maximization of an n-variable polynomial over the n-dimensional hypercube, where n is the number of nodes in G. Two (polynomial) objective functions F(x) and H(x) are considered. Given any solution to x0 in the hypercube, we propose two polynomial-time algorithms based on these formulations, for finding maximal independent sets with cardinality greater than or equal to F(x0) and H(x0), respectively. A relation between the two approaches is studied and a more general statement for dominating sets is proved. Results of preliminary computational experiments for some of the DIMACS clique benchmark graphs are presented.  相似文献   

8.
We find the maximum number of maximal independent sets in two families of graphs. The first family consists of all graphs with n vertices and at most r cycles. The second family is all graphs of the first family which are connected and satisfy n ≥ 3r. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 270–282, 2006  相似文献   

9.
The random greedy algorithm for finding a maximal independent set in a graph constructs a maximal independent set by inspecting the graph's vertices in a random order, adding the current vertex to the independent set if it is not adjacent to any previously added vertex. In this paper, we present a general framework for computing the asymptotic density of the random greedy independent set for sequences of (possibly random) graphs by employing a notion of local convergence. We use this framework to give straightforward proofs for results on previously studied families of graphs, like paths and binomial random graphs, and to study new ones, like random trees and sparse random planar graphs. We conclude by analysing the random greedy algorithm more closely when the base graph is a tree.  相似文献   

10.
A well‐known formula of Tutte and Berge expresses the size of a maximum matching in a graph G in terms of what is usually called the deficiency of G. A subset X of V(G) for which this deficiency is attained is called a Tutte set of G. While much is known about maximum matchings, less is known about the structure of Tutte sets. In this article, we study the structural aspects of maximal Tutte sets in a graph G. Towards this end, we introduce a related graph D(G). We first show that the maximal Tutte sets in G are precisely the maximal independent sets in its D‐graph D(G), and then continue with the study of D‐graphs in their own right, and of iterated D‐graphs. We show that G is isomorphic to a spanning subgraph of D(G), and characterize the graphs for which G?D(G) and for which D(G)?D2(G). Surprisingly, it turns out that for every graph G with a perfect matching, D3(G)?D2(G). Finally, we characterize bipartite D‐graphs and comment on the problem of characterizing D‐graphs in general. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 343–358, 2007  相似文献   

11.
The measure of scrambled sets of interval self-maps was studied by many authors, including Smítal, Misiurewicz, Bruckner and Hu, and Xiong and Yang. In this note, first we introduce the notion of ``-chaos" which is related to chaos in the sense of Li-Yorke, and we prove a general theorem which is an improvement of a theorem of Kuratowski on independent sets. Second, we apply the result to scrambled sets of higher dimensional cases. In particular, we show that if a map of the unit -cube is -chaotic on , then for any there is a map such that and are topologically conjugate, and has a scrambled set which has Lebesgue measure 1, and hence if , then there is a homeomorphism with a scrambled set satisfying that is an -set in and has Lebesgue measure 1.

  相似文献   


12.
Let m(G) denote the number of maximal independent sets of vertices in a graph G and let c(n,r) be the maximum value of m(G) over all connected graphs with n vertices and at most r cycles. A theorem of Griggs, Grinstead, and Guichard gives a formula for c(n,r) when r is large relative to n, while a theorem of Goh, Koh, Sagan, and Vatter does the same when r is small relative to n. We complete the determination of c(n,r) for all n and r and characterize the extremal graphs. Problems for maximum independent sets are also completely resolved. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 283–314, 2006  相似文献   

13.
Entringer, Goddard, and Henning studied graphs in which every vertex belongs to both an (m + 1)‐clique and an independent (n + 1)‐set; they proved that there is such a graph of order p if and only if . We give an alternative and slightly easier proof of this fact, relating it to combinatorial matrix theory. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 173–175, 2000  相似文献   

14.
People arrive one at a time to a theater consisting of m rows of length n. Being unfriendly they choose seats at random so that no one is in front of them, behind them or to either side. What is the expected number of people in the theater when it becomes full, i.e., it cannot accommodate any more unfriendly people? This is equivalent to the random process of generating a maximal independent set of an m×n grid by randomly choosing a node, removing it and its neighbors, and repeating until there are no nodes remaining. The case of m=1 was posed by Freedman and Shepp [D. Freedman, L. Shepp, An unfriendly seating arrangement (problem 62-3), SIAM Rev. 4 (2) (1962) 150] and solved independently by Friedman, Rothman and MacKenzie [H.D. Friedman, D. Rothman, Solution to: An unfriendly seating arrangement (problem 62-3), SIAM Rev. 6 (2) (1964) 180-182; J.K. MacKenzie, Sequential filling of a line by intervals placed at random and its application to linear adsorption, J. Chem. Phys. 37 (4) (1962) 723-728] by proving the asymptotic limit . In this paper we solve the case m=2 and prove the asymptotic limit . In addition, we consider the more general case of m×n grids, m≥1, and prove the existence of asymptotic limits in this general setting. We also make several conjectures based upon Monte Carlo simulations.  相似文献   

15.
We construct measures with independent support whose Fourier coefficients decrease as fast as possible.

  相似文献   


16.
In this paper, we introduce a graph structure, called non-zero component union graph on finite-dimensional vector spaces. We show that the graph is connected and find its domination number, clique number and chromatic number. It is shown that two non-zero component union graphs are isomorphic if and only if the base vector spaces are isomorphic. In case of finite fields, we study the edge-connectivity and condition under which the graph is Eulerian. Moreover, we provide a lower bound for the independence number of the graph. Finally, we come up with a structural characterization of non-zero component union graph.  相似文献   

17.
18.
The independent domination number i(G) (independent number (G)) is the minimum (maximum) cardinality among all maximal independent sets of G. Haviland (1995) conjectured that any connected regular graph G of order n and degree 1/2n satisfies i(G) 2n/3 1/2. For 1 k l m, the subset graph S m (k, l) is the bipartite graph whose vertices are the k- and l-subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for i(S m (k, l)) and prove that if k + l = m then Havilands conjecture holds for the subset graph S m (k, l). Furthermore, we give the exact value of (S m (k, l)).This work was supported by National Natural Sciences Foundation of China (19871036).  相似文献   

19.
The notion of recoverable value was advocated in the work of Feige, Immorlica, Mirrokni and Nazerzadeh (APPROX 2009) as a measure of quality for approximation algorithms. There, this concept was applied to facility location problems. In the current work we apply a similar framework to the maximum independent set problem (MIS). We say that an approximation algorithm has recoverable factor ρ, if for every graph it recovers an independent set of size at least where d(v) is the degree of vertex v, and I ranges over all independent sets in G. Hence, in a sense, from every vertex v in the maximum independent set the algorithm recovers a value of at least toward the solution. This quality measure is most effective in graphs in which the maximum independent set is composed of low degree vertices. A simple greedy algorithm achieves . We design a new randomized algorithm for MIS that ensures an expected recoverable factor of at least . In passing, we prove that approximating MIS in graphs with a given k‐coloring within a ratio larger than 2/ k is unique‐games hard. This rules out an alternative approach for obtaining . © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46, 142–159, 2015  相似文献   

20.
An independent set S of a graph G is said to be essential if S has a pair of vertices that are distance two apart in G. For SV(G) with S≠, let Δ(S)=max{dG(x)|xS}. We prove the following theorem. Let k2 and let G be a k-connected graph. Suppose that Δ(S)d for every essential independent set S of order k. Then G has a cycle of length at least min{|G|,2d}. This generalizes a result of Fan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号