首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
This study explores whether using the open approach instruction in teaching mathematics has a positive effect for enhancing pre-service teachers’ fraction knowledge. The test consisted of 32 items that were designed to examine pre-service teachers’ procedural and conceptual knowledge of fractions before and after receiving open approach instruction. The study was undertaken among students in four mathematics content and methods courses for the Elementary School Education program in a mid-western public university. The findings show that most of the teachers achieved improved learning outcomes through the open approach instruction.  相似文献   

2.
The importance of the knowledge of fractions in mathematical learning, coupled with the difficulties students have with them, has prompted researchers to focus on this particular area of mathematics. The term ‘fraction proficiency' used in this article refers to a person's conceptual comprehension, procedural skills and the ability to approach daily situations involving fractions. In the area of fractions, there has been a call for more research to study how, and where, efforts should be focused in order to integrate the various aspects of fraction knowledge for students, and even for teachers, to help them develop proficiency in fractions. Thus, the article presents a theoretical synthesis of the specialized literature in the learning and teaching of fractions, with the aim of proposing a framework for developing students' fraction proficiency. The frameworks presented in the article may shed light upon the implications for the design of fraction instruction, which should focus on developing a multi-faceted knowledge of fractions, rather than simply isolating one facet from the others.  相似文献   

3.
In this exploratory study, we examined the effects of a quantitative reasoning instructional approach to linear equations in two variables on community college students’ conceptual understanding, procedural fluency, and reasoning ability. This was done in comparison to the use of a traditional procedural approach for instruction on the same topic. Data were gathered from a common unit assessment that included procedural and conceptual questions. Results demonstrate that small changes in instruction focused on quantitative reasoning can lead to significant differences in students’ ability to demonstrate conceptual understanding compared to a procedural approach. The results also indicate that a quantitative reasoning approach does not appear to diminish students’ procedural skills, but that additional work is needed to understand how to best support students’ understanding of linear relationships.  相似文献   

4.
In this study, children were encouraged to abstract mathematical principles by making connections between procedures. Children from 2 sixth-grade classes (N = 58) were asked to solve and explain subtraction examples in 3 different number domains (whole numbers, fractions, and decimals), solve subtraction word problems, compare the procedures, and discuss subtraction principles. Forty percent of the children could identify procedural similarities and could abstract general subtraction principles. The rest of the children received more instruction. One group received individual abstraction and mapping instruction that encouraged them to generalize procedural steps and connect procedures. Another group received domain-specific instruction without connections between domains. The results show that following mapping instruction, children whose original instruction was mostly procedural could make connections and abstract principles, that is, construct a general subtraction schema. These children improved in conceptual knowledge and in solving transfer problems.  相似文献   

5.
In this study, children were encouraged to abstract mathematical principles by making connections between procedures. Children from 2 sixth-grade classes (N = 58) were asked to solve and explain subtraction examples in 3 different number domains (whole numbers, fractions, and decimals), solve subtraction word problems, compare the procedures, and discuss subtraction principles. Forty percent of the children could identify procedural similarities and could abstract general subtraction principles. The rest of the children received more instruction. One group received individual abstraction and mapping instruction that encouraged them to generalize procedural steps and connect procedures. Another group received domain-specific instruction without connections between domains. The results show that following mapping instruction, children whose original instruction was mostly procedural could make connections and abstract principles, that is, construct a general subtraction schema. These children improved in conceptual knowledge and in solving transfer problems.  相似文献   

6.
This study examined (a) the differences in preservice teachers’ procedural knowledge in four areas of fraction operations in Taiwan and the United States, (b) the differences in preservice teachers’ conceptual knowledge in four areas of fraction operations in Taiwan and the United States, and (c) correlation in preservice teachers’ conceptual knowledge and procedural knowledge of fractions in Taiwan and the United States. Participants were preservice teachers (N = 49) in a teacher education program in the United States and comparable Chinese preservice teachers (N = 47). Results indicated that Chinese preservice teachers performed better in procedural knowledge on fraction operations than American preservice teachers. No significant differences were found for conceptual knowledge on fraction division. Further, the correlation in this study showed that for Chinese and American preservice teachers, the relationship between conceptual and procedural knowledge of fraction operations was weak.  相似文献   

7.
8.
This study investigates students' retention of mathematical knowledge and skills in two differential equations classes. Posttests and delayed posttests after 1 year were administered to students in inquiry‐oriented and traditional classes. The results show that students in the inquiry‐oriented class retained conceptual knowledge, as seen by their performance on modeling problems, and retained equal proficiency in procedural problems, when compared with students in the traditionally taught classes. The results of this study add additional support to the claim that teaching for conceptual understanding can lead to longer retention of mathematical knowledge.  相似文献   

9.
A teaching experiment was conducted to investigate the effect of journal writing on achievement in and attitudes toward mathematics. Achievement variables included conceptual understanding, procedural knowledge, problem solving, mathematics school achievement, and mathematical communication. Subjects were selected from first intermediate students (11–13 years) attending the International College, Beirut, Lebanon, where either English or French is the language of mathematics instruction. The journal-writing (JW) group received the same mathematics instruction as the no-journal-writing (NJW) group, except that the JW group engaged in prompted journal writing for 7 to 10 minutes at the end of each class period, three times a week, for 12 weeks. The NJW group engaged in exercises during the same period. The results of ANCOVA suggest that journal writing has a positive impact on conceptual understanding, procedural knowledge, and mathematical communication but not on problem solving, school mathematics achievement, and attitudes toward mathematics. Gender, language of instruction, mathematics achievement level, and writing achievement level failed to interact with journal writing. Student responses to a questionnaire indicated that students found journal writing to have both cognitive and affective benefits.  相似文献   

10.
In this study, we implemented one-on-one fractions instruction to eight preservice teachers. The intervention, which was based on the principle of Progressive Formalization (Freudenthal, 1983), was centered on problem solving and on progressively formalizing the participants’ intuitive knowledge of fractions. The objectives of the study were to examine the potential effects of the intervention and to uncover specific difficulties experienced by the preservice teachers during instruction. Results revealed improvement on one measure of conceptual knowledge, but not on a transfer task, which required the teachers to generate word problems for number sentences involving fractions. In addition, the qualitative analysis of the videotaped instructional sessions revealed a number of cognitive obstacles encountered by the participants as they attempted to construct meaningful solutions and represent those solutions symbolically. Based on the findings, specific suggestions for modifying the intervention are provided for mathematics teacher educators.  相似文献   

11.
This paper critically examines the discrepancies among the pre-requisite fractional concepts assumed by a curricular unit on operations with fractions, the teacher's assumptions about those concepts and a particular student's understanding of fractions. The paper focuses on the case of one student (Tim) in the teacher's 6th grade class who was interviewed by one of the authors once a week during the teaching of the unit. The teaching materials and the teacher's instruction were based on the assumption that students understood the concept of a unit fraction as being one of several equal parts of a given whole. The teacher neither emphasized the need for equal parts nor the part-to-whole relation. The teacher's reasonable assumptions about her students’ understanding of fractions were severely challenged by the cognitive constructs that Tim exhibited during his first two interviews. When she viewed tapes of the class instruction and the interviews with Tim she realized Tim lacked essential constructs to make sense of her instruction. She subsequently made adjustments in her instruction, making effective use of more appropriate representations based on tasks from the unit that we modified and used with Tim in our interviews. These adjustments helped Tim to construct partitioning operations and an appropriate unit fractional scheme. This study illustrates the importance of coming to understand a student's mathematical activity in terms of possible conceptual schemes and modifying instructional strategies to build on those schemes. The coordinated design of the research study facilitated these instructional modifications.  相似文献   

12.
The purpose of this paper was to examine whether students’ epistemic beliefs differed as a function of variations in procedural versus conceptual knowledge in statistics. Students completed Hofer’s (Contem Edu Psychol 25:378–405, 2000) Discipline-Focused Epistemological Beliefs Questionnaire five times over the course of a semester. Differences were explored between students’ initial beliefs about statistics knowledge and their specific beliefs about conceptual knowledge and procedural knowledge in statistics. Results revealed differences across these contexts; students’ beliefs differed between procedural versus conceptual knowledge. Moreover, students’ initial beliefs about statistics knowledge were more similar to their beliefs about conceptual knowledge rather than procedural knowledge. Finally, regression analyses revealed that students’ beliefs about the justification of knowledge, attainability of truth and source of knowledge were significant predictors of examination performance, depending on the examination. These results have important theoretical, methodological and pedagogical implications.  相似文献   

13.
Forty‐two studies comparing students with access to graphing calculators during instruction to students who did not have access to graphing calculators during instruction are the subject of this meta‐analysis. The results on the achievement and attitude levels of students are presented. The studies evaluated cover middle and high school mathematics courses, as well as college courses through first semester calculus. When calculators were part of instruction but not testing, students' benefited from using calculators while developing the skills necessary to understand mathematics concepts. When calculators were included in testing and instruction, the procedural, conceptual, and overall achievement skills of students improved.  相似文献   

14.
This study analyzed the methods used to teach the multiplication of fractions in Turkish and American textbooks. Two Turkish textbooks and two American textbooks, Everyday Mathematics (EM) and Connected Mathematics 3 (CM), were analyzed. The analyses focused on the content and the nature of the mathematical problems presented in the textbooks. The findings of the study showed that the American textbooks aimed at developing conceptual understanding first and then procedural fluency, whereas the Turkish textbooks aimed at developing both concurrently. The American textbooks provided more opportunities for different computational strategies. The solutions to most problems in all textbooks required a single computational step, a numerical answer, and procedural knowledge. Furthermore, compared with the Turkish textbooks, the American textbooks contained a greater number of problems that required high-level cognitive skills such as mathematical reasoning.  相似文献   

15.
The purpose of this study is to investigate and compare the effects of activity-based and traditional instructions on students’ conceptual development of certain probability concepts. The study was conducted using a pretest–posttest control group design with 80 seventh graders. A developed ‘Conceptual Development Test’ comprising 12 open-ended questions was administered on both groups of students before and after the intervention. The data were analysed using analysis of covariance, with the pretest as covariate. The results revealed that activity-based instruction (ABI) outperformed the traditional counterpart in the development of probability concepts. Furthermore, ABI was found to contribute students’ conceptual development of the concept of ‘Probability of an Event’ the most, whereas to the concept of ‘Sample Space’ the least. As a consequence, it can be deduced that the designed instructional process was effective in the instruction of probability concepts.  相似文献   

16.
This exploratory case study investigates relationships between use of an inquiry‐based instructional style and student scores on standardized multiple‐choice tests. The study takes the form of a case study of physical science classes taught by one of the authors over a span of four school years. The first 2 years were taught using traditional instruction with low levels of inquiry (non‐inquiry group), and the last 2 years of classes were taught by inquiry methods. Students' physical science test scores, achievement data, and attendance data were examined and compared across both instructional styles. Results suggest that for this teacher the use of an inquiry‐based teaching style did not dramatically alter students' overall achievement, as measured by North Carolina's standardized test in physical science. However, inquiry‐based instruction had other positive effects, such as a dramatic improvement in student participation and higher classroom grades earned by students. In additional inquiry‐based instruction resulted in more uniform achievement than did traditional instruction, both in classroom measures and in more objective standardized test measures.  相似文献   

17.
Mathematization is critical in providing students with challenges for solving modelling tasks. Inadequate assumptions in a modelling task lead to an inadequate situational model, and to an inadequate mathematical model for the problem situation. However, the role of assumptions in solving modelling problems has been investigated only rarely. In this study, we intentionally designed two types of assumptions in two modelling tasks, namely, one task that requires non-numerical assumptions only and another that requires both non-numerical and numerical assumptions. Moreover, conceptual knowledge and procedural knowledge are also two factors influencing students’ modelling performance. However, current studies comparing modelling performance between Western and non-Western students do not consider the differences in students’ knowledge. This gap in research intrigued us and prompted us to investigate whether Taiwanese students can still perform better than German students if students’ mathematical knowledge in solving modelling tasks is differentiated. The results of our study showed that the Taiwanese students had significantly higher mathematical knowledge than did the German students with regard to either conceptual knowledge or procedural knowledge. However, if students of both countries were on the same level of mathematical knowledge, the German students were found to have higher modelling performance compared to the Taiwanese students in solving the same modelling tasks, whether such tasks required non-numerical assumptions only, or both non-numerical and numerical assumptions. This study provides evidence that making assumptions is a strength of German students compared to Taiwanese students. Our findings imply that Western mathematics education may be more effective in improving students’ ability to solve holistic modelling problems.  相似文献   

18.
Introductory statistics courses, which are important in preparing students for their daily lives, generally derive inferential statistics from informal knowledge. In this transition process, sampling distributions have an important place, yet research has shown that students often have difficulties with this concept. In order to increase their understanding of sampling distributions, students should have a strong conceptual foundation that is balanced with procedural knowledge. To address this issue, this study was designed to examine the relationship between college students’ procedural and conceptual knowledge of sampling distributions. With this aim in mind, an achievement test consisting of two sections – procedural and conceptual knowledge – was prepared. In answering the questions related to procedural knowledge, the participants were more successful in identifying the relationship between standard deviation of a population and sample means. However, they lacked theoretical knowledge about statements that they had heard or knew intuitively. Simulation activities provided in statistics courses may support students in developing their conceptual understanding in this regard.  相似文献   

19.
Domain experts have two major advantages over novices with regard to problem solving: experts more accurately encode deep problem features (feature encoding) and demonstrate better conceptual understanding of critical problem features (feature knowledge). In the current study, we explore the relative contributions of encoding and knowledge of problem features (e.g., negative signs, the equals sign, variables) when beginning algebra students solve simple algebraic equations. Thirty-two students completed problems designed to measure feature encoding, feature knowledge and equation solving. Results indicate that though both feature encoding and feature knowledge were correlated with equation-solving success, only feature knowledge independently predicted success. These results have implications for the design of instruction in algebra, and suggest that helping students to develop feature knowledge within a meaningful conceptual context may improve both encoding and problem-solving performance.  相似文献   

20.
The purpose of this study was to measure changes in students' science proficiency produced by a multimedia learning environment, Astronomy Village: Investigating the Solar System, developed at Wheeling Jesuit University's Center for Educational Technologies with funding from the National Science Foundation. The inquiry‐based design of Astronomy Village supports middle school students in learning fundamental concepts in life, earth, and physical science. Astronomy Village was compared to an alternative treatment that simulated elements of traditional science instruction using web site access to background materials and content in Astronomy Village. The results indicate sizable treatment effects for two groups of Astronomy Village students, as well as for the alternative treatment group. Differences in the treatment effect sizes among the three treatment groups reveal the relative merits of different approaches to using technology. The Linear Logistic Model for Change applied in this study is beneficial for comparing alternative uses of technology, since it separates effects due to treatments from natural trend effects and eliminates drawbacks of traditional statistical designs for pretest‐posttest changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号