首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a two‐hop multiple‐relay network implemented with opportunistic decode‐and‐forward cooperative strategy, where the first hop and second hop links experience different fading (Rayleigh and Rician). We derive the exact expressions of end‐to‐end outage probability and analyze the approximate results in high signal‐to‐noise ratio region. The analysis shows that the same diversity order can be achieved even in different mixed fading environments. Simulation results are provided to verify our analysis.  相似文献   

2.
Xianyi Rui 《ETRI Journal》2010,32(1):139-141
In this letter, closed‐form approximations for outage probability and symbol error rate are presented for a selective decode‐and‐forward relay network with partial channel information. An independent but not identically distributed Rayleigh fading environment is considered. Numerical and simulated results demonstrate the validity of the analytical results.  相似文献   

3.
Exact expressions for outage probability and symbol error rate are presented for a decode‐and‐forward cooperative network with partial relay selection. An independent but not identically distributed Nakagami‐m fading environment is considered. Numerical and simulated results show the validity of the analytical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper addresses the full‐duplex relaying. Some expressions for outage and average capacity of a two‐hop cooperative system with a full‐duplex relay are derived under an independent but not identically distributed Rayleigh fading environment. Using these expressions, we provide the performance analysis without Monte Carlo simulations. The impact of interference between the relay output and input is investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A kind of amplify‐and‐forward (AF) and decode‐and‐forward (DF) mixed relay communication system is proposed in this letter. The source broadcasts the signal to all the relays. Relays that can decode the signal adopt DF scheme to retransmit the signal, while the rest adopt AF scheme for retransmission. The destination employs maximum ratio combining technique to maximize the received signal‐to‐noise ratio. Another situation concerned in this letter is that when the relay cannot decode the source signal, it may retransmit the interference signal with AF scheme. Closed‐form expressions of outage probability are derived. Simulation results show that the analytical curves agree with the simulated ones very well, and the AF‐DF mixed relay system can improve the availability of the relays. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The denoising mapping with the closest‐neighbor clustering (CNC) method in denoise‐and‐forward two‐way relay channels is studied. Specifically, the symmetry of the constellations in source terminals A and B is utilized to reduce the complexity of the CNC method. The specific case considered first to illustrate how the constellation symmetry works in the CNC method is the quadrature phase‐shift keying constellation in A and B and the single‐antenna deployment in all terminals. This case study shows that an enormous complexity reduction can be achieved. Next, the result is extended to multiple‐antenna scenarios and square quadrature amplitude modulations.  相似文献   

7.
Binyue Liu  Ye Yang 《ETRI Journal》2014,36(4):599-608
This paper studies a parallel relay network where the relays employ an amplify‐and‐forward (AF) relaying scheme and are subjected to individual power constraints. We consider correlated effective relay noise arising from practical scenarios when the relays are exposed to common interferers. Assuming that the noise covariance and the full channel state information are available, we investigate the problem of finding the optimal AF scheme in terms of maximum end‐to‐end transmission rate. It is shown that the maximization problem can be equivalently transformed to a convex semi‐definite program, which can be efficiently solved. Then an upper bound on the maximum achievable AF rate of this network is provided to further evaluate the performance of the optimal AF scheme. It is proved that the upper bound can be asymptotically achieved in two special regimes when the transmit power of the source node or the relays is sufficiently large. Finally, both theoretical and numerical results are given to show that, on average, noise correlation is beneficial to the transmission rate — whether the relays know the noise covariance matrix or not.  相似文献   

8.
This paper considers the cognitive radio network with one primary user (PU), one secondary user (SU), and multiple decode‐and‐forward relays. We propose a relaying scheme to ensure the priority of primary transmission, where the relays are used to forward PU's message and sometimes also SU's message. First, SU is allowed to use the spectrum to transmit only when its transmission would not affect the decoding status of PU's message at all relays. Second, once the secondary transmission happens, the relays that successively decode SU's message are allowed to retransmit this message when it would not affect the decoding status of PU's message at primary receiver. The interference from PU to SU and the interference from SU to PU are both considered. By analyzing the decoding status of primary message and secondary message at different relays, we formulate the outage probabilities of both primary transmission and secondary transmission. When all channels follow Rayleigh distributions, we derive the analytical expressions for the general case of any number of relays, which are validated by means of Monte Carlo simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, secure multicasting with the help of cooperative decode‐and‐forward relays is considered for the case in which a source securely sends a common message to multiple destinations in the presence of a single eavesdropper. We show that the secrecy rate maximization problem in the secure multicasting scenario under an overall power constraint can be solved using semidefinite programing with semidefinite relaxation and a bisection technique. Further, a suboptimal approach using zero‐forcing beamforming and linear programming based power allocation is also proposed. Numerical results illustrate the secrecy rates achieved by the proposed schemes under secure multicasting scenarios.  相似文献   

10.
Recently, efficient partial relay selection (e‐PRS) was proposed as an enhanced version of PRS. In comparing e‐PRS, PRS, and the best relay selection (BRS), there is a tradeoff between complexity and performance; that is, the complexity for PRS, e‐PRS, and BRS is low to high, respectively, but vice versa for performance. In this paper, we study the outage probability for e‐PRS in decode‐and‐forward (DF) relaying systems over non‐identical Nakagami‐m fading channels, where the fading parameter m is an integer. In particular, we provide closed‐form expressions of the exact outage probability and asymptotic outage probability for e‐PRS in DF relaying systems. Numerical results show that e‐PRS achieves similar outage performance to that of BRS for a low or medium signal‐to‐noise ratio, a high fading parameter, a small number of relays, and a large difference between the average channel powers for the first and the second hops.  相似文献   

11.
Two new demodulate‐and‐forward schemes of multi‐relay cooperative diversity with switch‐and‐examine relaying (SER) are analyzed. To reduce relay usage and enhance bandwidth efficiency, the two new cooperative diversity schemes employ a switch‐based relay selection. The proposed schemes consume less communication resource than regular relaying schemes, such as the selection combining (SC) or maximal ratio combining (MRC) schemes that always use all relays, and also achieve better performance than distributed switch‐and‐stay schemes. In the first scheme, the decision statistic for relay usage and selection is based on the signal‐to‐noise ratio (SNR). In the second scheme, the log‐likelihood ratio (LLR) of received signals is used for the decision of relay usage and selection. With the two SER schemes, the bit error probability (BEP) of binary phase shift keying (BPSK) and the average number of used paths are derived and expressed in closed‐form for the independent and identically distributed (i.i.d.) Rayleigh fading channels. Numerical and simulation results are presented for performance illustrations. According to the numerical results, the LLR‐based SER not only achieves a lower BEP but also consumes less relay resource than the SNR‐based SER. Furthermore, the LLR‐based SER scheme even outperforms the corresponding SNR‐based SC scheme for a range of average SNR. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
侯晔  潘长勇  杨昉 《电视技术》2013,37(4):29-31,35
介绍了一种结合星座旋转和坐标交织的信号空间分集技术。该技术能以较低的实现复杂度为代价,提高信号分集阶数,获得分集增益。仿真结果证明,将这一技术应用于DTMB系统中,能有效地改善DTMB系统在衰落信道下的信号接收质量。  相似文献   

13.
In this paper, we derive the upper bound of bit‐error rate (BER) performance and diversity gain for a decode‐and‐forward (DF) cooperative system. Either maximal‐ratio combining (MRC) or cooperative MRC (C‐MRC) is employed at the receiver in the presence of independent, non‐identical Nakagami‐m fading. Both analytical and simulation results show that C‐MRC takes advantage of spatial diversity more efficiently and thus achieves the same or better performance and diversity order as compared to MRC. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the error performance of three relaying protocols with multiple decode‐and‐forward relays. In the first protocol, relays that can decode correctly will forward the signals from source. Nevertheless, selection cooperation (SC) and opportunistic relaying (OR) are adopted to select only a single relay to forward in the other two protocols, respectively. At sufficiently high signal‐to‐noise ratio, the upper bounds on bit error probability are derived for three protocols, where the developments apply for various channel fading models. Simulation results are provided to verify the tightness of the analytical bounds, and the performance comparisons among different relaying protocols are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we study scheduling schemes for two‐user two‐way wireless relaying systems. Two transmission modes are considered: point‐to‐point direct transmission and two‐way amplify‐and‐forward relaying. An optimal scheduling scheme that opportunistically selects the best transmission mode for each user is proposed to minimize the sum bit error rate (BER). The performance lower bound of the optimal scheduling scheme is analyzed, and closed‐form expression of the lower‐bound BER is derived. However, for optimal scheduling, the scheduler requires the knowledge of channel state information (CSI) of all links. To reduce the feedback information of CSI, we also propose a suboptimal scheduling scheme that selects the transmission mode using only the CSI of two direct links. Simulation results show that there are 4 dB to 8 dB gains for the proposed optimal and suboptimal schemes over the fixed direct transmission and fixed two‐way relayed transmission scheme. The performance gap between the optimal and suboptimal scheduling schemes is small, which implies a good trade‐off between implementation complexity and system performance.  相似文献   

16.
This work investigates secure cluster‐aided multi‐hop randomize‐and‐forward networks. We present a hop‐by‐hop multi‐hop transmission scheme with relay selection, which evaluates for each cluster the relays that can securely receive the message. We propose an analytical model to derive the secure connectivity probability (SCP) of the hop‐by‐hop transmission scheme. For comparison, we also analyze SCPs of traditional end‐to‐end transmission schemes with two relay‐selection policies. We perform simulations, and our analytical results verify that the proposed hop‐by‐hop scheme is superior to end‐to‐end schemes, especially with a large number of hops or high eavesdropper channel quality. Numerical results also show that the proposed hop‐by‐hop scheme achieves near‐optimal performance in terms of the SCP.  相似文献   

17.
Cooperative communications obtain the transmission and channel diversity gains by using the relay node. However, since cooperative communications transmit the redundancy signal to obtain the transmission diversity gain, the transmission rate is degraded. Moreover, since cooperative communications add the interference in the relay node, the diversity gain is also degraded. The packet splitting has been proposed based on the channel state information of the time domain to obtain the good system performance without the redundancy signal. Moreover, the adaptive modulation has been proposed to improve the transmission rate. In this paper, we propose the combination method with the packet splitting and the adaptive modulation based on the channel state information of the time domain to improve the bit error rate and throughput performances for decode‐and‐forward cooperative orthogonal frequency division multiplexing systems in the different channel model. From the computer simulation results, we determine the optimum weight and threshold for the proposed method. Moreover, the proposed method shows the good bit error rate and throughput performances.  相似文献   

18.
This paper derives the asymptotic symbol error rate (SER) and outage probability of decode‐and‐forward (DF) cooperative communications over Rician fading channels. How to optimally allocate the total power is also addressed when the performance metric in terms of SER or outage probability is taken into consideration. Analysis reveals the insights that Rician factor has a great impact on the system performance as compared with the channel variance, and the relay–destination channel quality is of importance. In addition, the source–relay channel condition is irrelevant to the optimal power allocation design. Simulation and numerical evaluation substantiate the tightness of the asymptotic expressions in the high‐SNR regions and demonstrate the accuracy of our theoretical analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the decode‐and‐forward two‐way relaying channel without direct link and proposes a protocol based on the physical‐layer network coding (PNC) protocol. The proposed protocol (termed ORT) introduces one retransmission into PNC, aiming at enhancing its outage performance. To manifest the merits of ORT, we compare it with PNC and the time‐division broadcast (TDBC) protocol, in terms of outage performance, expected rate, and diversity‐multiplexing tradeoff (DMT). Firstly, we derive the outage probability of the three protocols and then the expected rate. Secondly, asymptotic analysis is conducted to shed light on the diversity and coding gains. Finally, the DMT is obtained for the three protocols. The numerical results reveal the following: (i) that ORT performs better than PNC in both outage and expected rate performance when the nodes transmit with different powers. However, it has the same DMT performance with PNC; (ii) that ORT possesses improved DMT performance over TDBC whereas its expected rate is only better than the latter at medium to high signal‐to‐noise ratio. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, we investigate the performance assessment of a bidirectional relaying system using energy harvesting techniques. We assume independent and nonidentically distributed (i.n.i.d.) Nakagami‐m fading channels where the amplify‐and‐forward relay is subject to co‐channel interference (CCI) due to transmissions of other transmitters. Two different scenarios, namely, scenario I and scenario II are evaluated. In scenario I, both end‐sources provide the required energy for the relay, whereas the relay also harvests energy from the co‐channel interferes. Then, in the first phase of cooperation, both end‐sources send the information to the relay, and after amplifying the received signal, relay transfers information to the appropriate destination in the second time‐slot. In the scenario II, both end‐sources harvest energy from the relay. After that, the information cooperative transmission is done similar to the first scenario. For both considered scenarios, tight closed‐form expressions of outage probability, symbol error probability, ergodic capacity, and throughput are obtained at arbitrary signal‐to‐noise‐ratios (SNRs). To get more insights, simplified high SNR results for both scenarios are also deduced where the diversity orders are obtained. Monte Carlo simulation results are presented to validate the correctness of our proposed analysis. Our results explicitly demonstrate that the first scenario has a better performance than the second one in the medium and high SNR region, whereas the second scenario outperforms the first one in the low SNR regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号