首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the conceptions of nature of science (NOS) possessed by a group of gifted seventh‐grade students from Taiwan. The students were engaged in a 1‐week science camp with emphasis on scientific inquiry and NOS. A Chinese version of a NOS questionnaire was developed, specifically addressing the context of Chinese culture, to assess students' views on the development of scientific knowledge. Pretest results indicated that the majority of participants had a basic understanding of the tentative, subjective, empirical, and socially and culturally embedded aspects of NOS. Some conflicting views and misconceptions held by the participants are discussed. There were no significant changes in students' views of NOS after instruction, possibly due to time limitations and a ceiling effect. The relationship between students' cultural values and development of NOS conceptions and the impact of NOS knowledge on students' science learning are worth further investigation.  相似文献   

2.
The purpose of the present quasi‐experimental study was to examine the impact of a horseshoe crab citizen science program on student achievement and science, technology, engineering, and mathematics (STEM) career motivation with 86 (n = 86) eighth‐grade students. The treatment group conducted fieldwork with naturalists and collected data for a professional biologist studying horseshoe crab speciation and a mock survey. The comparison group studied curriculum related to horseshoe crabs in the science classroom. A series of measures related to self‐efficacy, interest, outcome expectations, choice goals, and content knowledge were given to participants before and after the intervention. It was hypothesized that students would report higher motivational beliefs regarding science and show higher levels of achievement following the intervention than the comparison group. Support was shown for most of the hypotheses. In addition, path analyses indicated that students' motivational beliefs influence content knowledge and outcome expectations, which in turn affect their career goals. These results have implications for incorporating authentic fieldwork within a formal school structure as an effective method for promoting student achievement and STEM career motivation.  相似文献   

3.
The purpose of the study was to assess elementary students' science process skills, content knowledge, and concept knowledge after one year of participation in an elementary Science, Technology, Engineering, and Mathematics (STEM) program. This study documented the effects of the combination of intensive professional development and the use of inquiry‐based science instruction in the elementary classroom, including the benefits of using rigorous science curriculum with general education students. The results of the study revealed a statistically significant gain in science process skills, science concepts, and science‐content knowledge by general education students in the experimental group when compared with students in the comparison group. Moreover, teacher participation in the STEM program had a statistically significant impact on students' variability in posttest scores. These interim student performance data support the implementation of rigorous differentiated science curriculum focused on improving science concept, content knowledge, and process skills.  相似文献   

4.
Informal Science Education (ISE) programs have been increasing in popularity in recent years. The National Research Council has laid out six strands that ISE programs should try to address, including increasing interest, knowledge, and allowing participants to engage in scientific activities. Past research suggests that informal settings can increase interest in science and may lead to knowledge gains. This study examined the impact of a unique ISE program that resembles a traveling museum and offers small‐scale, interactive experiences. Affective outcomes and self‐reported learning outcomes of the students who participated in the program were examined. In general, students reported increases in science interest and some knowledge gains. Students also reported they thought the program allowed them to engage in science. There were differences in student responses based on grade level, with intermediate elementary students more likely to report greater knowledge gains and more likely to see the educational value of the experience. Interestingly, middle school students were more likely to value the social aspects of the experience, another important aspect of ISE. This study provides some insight into the connections between the different ISE strands of informal science education and offers suggestions for future research.  相似文献   

5.
This article is about an investigation of six middle school science teachers’ beliefs and instructional practice about the coherence of the science they teach as articulated by National Science Education Standards ( NRC, 1996 ). Many well intentioned reform efforts focus on improving content knowledge of teachers, but many classroom teachers regularly miss opportunities to provide conceptual connections within the science ideas building the sense of coherence in science. This investigation involved a quasi experimental study to examine the efficacy of a method for collecting data about middle school science teachers’ thinking about science and to determine if they teach science coherently. The teachers were surveyed, interviewed, provided concept maps about their thinking of the science they taught, and observed to investigate whether their practice reflects their beliefs. An examination of the teachers’ beliefs, stated and unstated curriculum, the connections among topics and the nature of science revealed that one, the observation tool may have merit for identifying the content and connections among science topics, and two, that teachers ‘stated beliefs consistent with the National Science Education Standards’ vision for coherent science, did not match their demonstrated practice. The content taught could be characterized in three ways; coherent content and few connections, coherent content and connections, and not coherent content. This indicates for this group of middle school science teachers that knowing how they think about science and how those beliefs are reflected in their teaching is complex. This study can inform teacher education and professional development efforts about the need to move beyond just content enhancement to examine prior beliefs about the connections of concepts within science.  相似文献   

6.
This article addresses and attempts to refute several of the most widespread and enduring misconceptions held by students regarding the enterprise of science. The ten myths discussed include the common notions that theories become laws, that hypotheses are best characterized as educated guesses, and that there is a commonly-applied scientific method. In addition, the article includes discussion of other incorrect ideas such as the view that evidence leads to sure knowledge, that science and its methods provide absolute proof, and that science is not a creative endeavor. Finally, the myths that scientists are objective, that experiments are the sole route to scientific knowledge and that scientific conclusions are continually reviewed conclude this presentation. The paper ends with a plea that instruction in and opportunities to experience the nature of science are vital in preservice and inservice teacher education programs to help unseat the myths of science.  相似文献   

7.
The purpose of the study was to examine what scientists studying to become teachers know about the nature of science (NOS) before, during and after a course focused on NOS. The 16 scientists had an average of 9.7 years of work experience. The course was structured to teach knowledge about the aspects of NOS, demonstrate effective methods of teaching NOS, provide examples of successful attempts at meaningfully incorporating NOS into science content, and give students an opportunity to design and teach their own lessons incorporating NOS. Data sources collected include a prepost test of Views of Science and Education, electronic discussion postings, written class assignment of a clinical interview with an adolescent about NOS, video recordings of teaching, and individual interviews conducted three months after the course. Quantitative and qualitative data indicate that the scientists entered the course with much knowledge regarding the tentativeness of science and the nature of observations. There were significant gains in sophistication of view of NOS with regard to the following aspects of NOS: (a) knowing that variety of scientific methods exist, (b) the role of theories and laws, (c) the use of imagination, and (d) the role of subjectivity and objectivity in science.  相似文献   

8.
This study explored if a weeklong science camp changed Louisiana African‐American high school students' perception of science. A semi‐structured survey was used before and after the camp to determine the changes in science attitudes and career choices. Among the perceived benefits were parental involvement, increased science academic ability, and deepened scientific knowledge. These perceived benefits influenced the identities that students constructed for themselves in relation to science in their lives. Students who reported doing well in school science courses believed that science was more relevant to their lives. Female students who cited doing well in science reported less parental involvement in their schoolwork than males. This study draws attention to gender differences in science and to designing informal science learning experiences for African‐American high school students that can change attitudes toward career choices in science‐related fields.  相似文献   

9.
Creating scientifically literate students is a common goal among educational stakeholders. An understanding of nature of science is an important component of scientific literacy in K‐12 science education. Q methodology was used to investigate the opinions of preservice and in‐service teachers on how they intend to teach or currently teach science. Q methodology is a measurement tool designed to capture personal beliefs. Participants included 40 preservice and in‐service elementary and secondary science teachers who sorted 40 self‐referential statements regarding science instruction. The results identified three epistemologies toward teaching science: A Changing World, My Beliefs, and Tried and True. Participants with the A Changing World epistemology believe evidence is reliable, scientific knowledge is generated in multiple ways, and science changes in light of new evidence. The My Beliefs epistemology reflects that scientific knowledge is subject to change due to embedded bias, science is affected by culture and religion, and evolution should not be taught in the classroom. The Tried and True epistemology views a scientific method as an exact method to prove science, believes experiments are crucial for scientific discoveries, absolute truth exists in scientific knowledge, and society and cultural factors can be eliminated from investigations. Implications for preservice teacher education programs and in‐service teacher professional development are addressed.  相似文献   

10.
The study examined relationships among key domains of science instruction with English language learning (ELL) students based on teachers' perceptions of their classroom practices (i.e., what they think they do) and actual classroom practices (i.e., what they are observed doing). The four domains under investigation included: (1) teachers' knowledge of science content; (2) teaching practices to support scientific understanding; (3) teaching practices to support scientific inquiry; and (4) teaching practices to support English language development during science instruction. The study involved 38 third‐grade teachers participating in the first‐year implementation of a professional development intervention aimed at improving science and literacy achievement of ELL students in urban elementary schools. Based on teachers' self‐reports, practices for understanding were related to practices for inquiry and practices for English language development. Based on classroom observations in the fall and spring, practices for understanding were related to practices for inquiry, practices for English language development, and teacher knowledge of science content. However, we found a weak to non‐existent relationship between teachers' self‐reports and observations of their practices.  相似文献   

11.
The use of a project‐based science (PBS) approach to teaching encourages students to integrate mathematics and science in meaningful ways as they create projects. As a beginning study of how students use mathematics in such an approach, an analysis of 23 projects developed by preservice elementary teachers enrolled in an elementary science course was conducted. Findings showed that students made a number of different types of mathematical errors and underutilized data representation and summary forms. Implications included the importance of developing methods for supporting the use of mathematical tools in utilizing a project‐based approach and considering ways that such tools mediate scientific thinking.  相似文献   

12.
This study assessed the influence of using mind maps as a learning tool on eighth graders’ science achievement, whether such influence was mediated by students’ prior scholastic achievement, and the relationship between students’ mind maps and their conceptual understandings. Sixty‐two students enrolled in four intact sections of a grade 8 science classroom were randomly assigned to experimental and comparison conditions. Participants in the experimental group received training in, and constructed, mind maps throughout a science unit. Engagement with mind mapping was counterbalanced with involving the comparison group participants with note summarization to control for time on task as a confounding variable. Otherwise, the intervention was similar for both groups in all respects. A multiple choice test was used to measure student gains across two categories and three levels of achievement. Data analyses indicated that the experimental group participants achieved statistically significant and substantially higher gains than students in the comparison group. The gains were not mediated by participants’ prior scholastic achievement. Analyses also indicated that iconography was not as central to participants’ mind maps as often theorized. Depicting accurate links between central themes and major and minor concepts, and using colors to represent concepts were the major aspects that differentiated the mind maps built by students who achieved higher levels of conceptual understanding.  相似文献   

13.
This study examines the effects of integrated science, technology, and engineering (STE) education on second‐, third‐, and fourth‐grade students' STE content knowledge and aspirations concerning engineering after validation of the measures. During the 2009–2010 school year, 59 elementary school teachers, who attended a week‐long engineering teacher professional development (TPD) program, implemented STE integrated lessons in schools in a large, south‐central U.S. school district. At the beginning and end of the school year, the Student Knowledge Tests (SKTs) and the Engineering Identity Development Scale (EIDS) were administered to 831 students either in classrooms with the STE integrated lessons (treatment) or without (control). Item and confirmatory factor analyses provided sufficient reliability and validity evidence of the SKTs. Significant differences between treatment and control groups for all three grades on the post‐SKTs indicate the impact of STE integration on students' content knowledge. The EIDS showed no significant group differences on the academic subscale, while the engineering career subscale showed that treatment group students scored significantly higher than control group students in all three grades. Those significant changes in the treatment group in knowledge and aspirations are strong evidence for the potential impact of STE integration.  相似文献   

14.
Academic science achievement of U.S. students has raised concerns regarding our ability as a nation to compete in a global economy. Additionally, research has shown that many elementary teachers have weak science content backgrounds and had poor/negative experiences as students of science, resulting in a lack of confidence regarding teaching science. However, efforts to increase science self‐efficacy (SE) in preservice teachers can help to combat these issues. This study looked at a sample of preservice elementary teachers engaged in a semester‐long science content course, using Bandura's concept of SE as a conceptual framework. Our quantitative data showed significant increases in science SE on both subscales (personal efficacy and outcome expectancy). Our qualitative data showed that students communicated an increased sense of confidence with regard to the discipline of science. In addition, students reported learning science pedagogy through the instructor's modeling. Combining our findings resulted in several meta‐inferences, one of which showed students growing as both confident learners of science and teachers of science simultaneously. We created a construct new to the literature to describe this phenomenon: “teacher‐learner,” for students are both learning science and learning to teach science simultaneously through the content course experience, resulting in increased science SE.  相似文献   

15.
This study reports on a multiyear effort to create and evaluate cognitive‐based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in physics and advanced biology classes. These units made use of an instructional design based upon recent cognitive science research called the Legacy Cycle. Over a 3‐year period, comparison of student knowledge on written questions related to central concepts in physics and/or biology generally favored students who had worked with the experimental materials over students in control classrooms. In addition, experimental students were better able to solve applications type problems, as well as unit‐specific near transfer problems.  相似文献   

16.
The aim of this study is to analyze the effects of project‐based learning on students' academic achievement, attitude, and retention of knowledge in relation to the subject of “Electricity in Our Lives” in a fourth‐grade science course. The study was conducted in a quasi‐experimental design as a “pre‐test, post‐test with control group.” In the experimental group, the unit was taught through the project‐based learning method. The measuring tools were administered to both groups before and after the applications. To perfectly analyze the “process” of the method, seven different learning assessment “forms” were administered to the students. The findings of the forms indicated that the students learn to construct their own learning and to evaluate changes in their own behavior through the application of the method. The application of different methods between both groups had a statistically significant effect in terms of academic achievement, (F(1,112) = 46.78, p = .000) and of retention of knowledge (F(1,112) = 35.24, p = .000). However, there were no statistically significant effects from being in different groups for the attitudes of students (F(1,112) = .99, p = .321). For the students, being in the project‐based learning groups resulted in better academic achievement and retention of knowledge than being in the traditional teaching group.  相似文献   

17.
The need for multicultural science education for all students is discussed in this paper. The nature of science in Africa is compared to traditional Western science and the pros and cons of each are examined, Contributions to scientific knowledge by Africans and African-Americans are then considered. Finally, suggestions are given on integrating the contributions of Africans and African-Americans into the science classroom and curriculum.  相似文献   

18.
The nature of student thinking in confirmation and open-inquiry laboratory activities was compared. Student thinking in laboratory activities was contextualized by the laboratory activity structure and teacher and student interactions. Students in each laboratory treatment were observed throughout five life science laboratories, with the life science topic consistent across treatments. From a frequency perspective there appeared to be no difference in the student thinking processes exhibited across life science content. Based on the multiple regression analysis, however, the nature of student thinking differed across laboratory treatments. Student thinking processes exhibited in confirmation laboratories emphasized procedures and techniques, making sense of and doing the laboratory, whereas student thinking in open-inquiry laboratories emphasized data analysis, making sense of the results. Student-student interactions contributed more to student thinking in open-inquiry laboratories, whereas teacher-student interactions promoted student thinking in confirmation laboratories.  相似文献   

19.
This study examined the science self‐efficacy beliefs of students at the transition from elementary school (Grade 6) to middle school (Grade 7) and the transition from middle school (Grade 8) to high school (Grade 9). The purpose was to determine whether students' perceived competence is impacted at these important school transitions and if the effect is mediated by gender and ethnicity. Science self‐efficacy was measured through a modified Self‐Efficacy Questionnaire for Children, which was adapted to focus specifically on science self‐efficacy. Multiple ordinary least squares regression was used to analyze the data. Two models were developed, one using ninth grade as the comparison group and the other using sixth grade as the comparison group. In each model, the independent variables (grade level, gender, and ethnicity) were regressed on the dependent variable, science self‐efficacy. The most striking finding was the large and significant decline in science self‐efficacy scores for ninth graders at the transition to high school. We also found that females and Hispanic students had lower scores across grades as compared to males and Caucasians. How these results relate to existing studies, and implications for practice and future research are discussed.  相似文献   

20.
A laboratory practical examination was used to compare the investigative skills developed in two different types of general‐chemistry laboratory courses. Science and engineering majors (SEM) in the control group used a traditional verification approach (SEM‐Ctrl), whereas those in the treatment group learned from an innovative, inquiry‐based approach (SEM‐Trt). A scoring rubric was developed from their examination sheets to assess six component investigative skills. Results indicated that SEM students in the SEM‐Trt group scored significantly higher than those in SEM‐Ctrl for all six skills. Furthermore, nursing and applied science majors (NonSEM) in the inquiry‐based group (NonSEM‐Trt) wrote significantly better discussions than did SEM students in SEM‐Ctrl group. Overall, competency at the mid‐range level of laboratory skills was attained by most SEM‐Trt students (72.5%) but by only 30.5% of SEM‐Ctrl and 28.6% of NonSEM‐Trt students. Apparently, during the semester students in the SEM‐Trt group were able to use the inquiry‐based method effectively to combine chemical tasks with writing tasks and postlaboratory discussions. One implication of this study for science instructors is that practical examinations can provide useful feedback regarding the quality of the laboratory experience. Another implication is that this study provides evidence for the use of the innovative inquiry‐based laboratory approach to support student learning of high‐level investigative skills. However, students' requisite background knowledge must match the level of these skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号