首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We introduce the notion of weak acyclic coloring of a graph. This is a relaxation of the usual notion of acyclic coloring which is often sufficient for applications. We then use this concept to analyze the (a,b)-coloring game. This game is played on a finite graph G, using a set of colors X, by two players Alice and Bob with Alice playing first. On each turn Alice (Bob) chooses a (b) uncolored vertices and properly colors them with colors from X. Alice wins if the players eventually create a proper coloring of G; otherwise Bob wins when one of the players has no legal move. The (a,b)-game chromatic number of G, denoted (a,b)-χg(G), is the least integer t such that Alice has a winning strategy when the game is played on G using t colors. We show that if the weak acyclic chromatic number of G is at most k then (2,1)-.  相似文献   

2.
A clique coloring of a graph is a coloring of the vertices so that no maximal clique is monochromatic (ignoring isolated vertices). The smallest number of colors in such a coloring is the clique chromatic number. In this paper, we study the asymptotic behavior of the clique chromatic number of the random graph ??(n,p) for a wide range of edge‐probabilities p = p(n). We see that the typical clique chromatic number, as a function of the average degree, forms an intriguing step function.  相似文献   

3.
The Grundy (or First-Fit) chromatic number of a graph G is the maximum number of colors used by the First-Fit coloring of the graph G. In this paper we give upper bounds for the Grundy number of graphs in terms of vertex degrees, girth, clique partition number and for the line graphs. Next we show that if the Grundy number of a graph is large enough then the graph contains a subgraph of prescribed large girth and Grundy number.  相似文献   

4.
In this paper we obtain some upper bounds for the b-chromatic number of K1,s-free graphs, graphs with given minimum clique partition and bipartite graphs. These bounds are given in terms of either the clique number or the chromatic number of a graph or the biclique number for a bipartite graph. We show that all the bounds are tight.  相似文献   

5.
A harmonious coloring of a simple graph G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colors in such a coloring. We obtain a new upper bound for the harmonious chromatic number of general graphs. © 1998 John Wiley & Sons, Inc. J Graph Theory 29: 257–261, 1998  相似文献   

6.
For an integer r>0, a conditional(k,r)-coloring of a graph G is a proper k-coloring of the vertices of G such that every vertex of degree at least r in G will be adjacent to vertices with at least r different colors. The smallest integer k for which a graph G has a conditional (k,r)-coloring is the rth order conditional chromatic number χr(G). In this paper, the behavior and bounds of conditional chromatic number of a graph G are investigated.  相似文献   

7.
Given a graph H , a graph G is called a Ramsey graph of H if there is a monochromatic copy of H in every coloring of the edges of G with two colors. Two graphs G , H are called Ramsey equivalent if they have the same set of Ramsey graphs. Fox et al. (J Combin Theory Ser B 109 (2014), 120–133) asked whether there are two nonisomorphic connected graphs that are Ramsey equivalent. They proved that a clique is not Ramsey equivalent to any other connected graph. Results of Ne?et?il et al. showed that any two graphs with different clique number (Combinatorica 1(2) (1981), 199–202) or different odd girth (Comment Math Univ Carolin 20(3) (1979), 565–582) are not Ramsey equivalent. These are the only structural graph parameters we know that “distinguish” two graphs in the above sense. This article provides further supportive evidence for a negative answer to the question of Fox et al. by claiming that for wide classes of graphs, the chromatic number is a distinguishing parameter. In addition, it is shown here that all stars and paths and all connected graphs on at most five vertices are not Ramsey equivalent to any other connected graph. Moreover, two connected graphs are not Ramsey equivalent if they belong to a special class of trees or to classes of graphs with clique‐reduction properties.  相似文献   

8.
We study Beck-like coloring of partially ordered sets (posets) with a least element 0. To any poset P with 0 we assign a graph (called a zero-divisor graph) whose vertices are labelled by the elements of P with two vertices x,y adjacent if 0 is the only element lying below x and y. We prove that for such graphs, the chromatic number and the clique number coincide. Also, we give a condition under which posets are not finitely colorable.  相似文献   

9.
The semidefinite programming formulation of the Lovász theta number does not only give one of the best polynomial simultaneous bounds on the chromatic number χ(G) or the clique number ω(G) of a graph, but also leads to heuristics for graph coloring and extracting large cliques. This semidefinite programming formulation can be tightened toward either χ(G) or ω(G) by adding several types of cutting planes. We explore several such strengthenings, and show that some of them can be computed with the same effort as the theta number. We also investigate computational simplifications for graphs with rich automorphism groups. Partial support by the EU project Algorithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438, is gratefully acknowledged.  相似文献   

10.
We consider the following edge coloring game on a graph G. Given t distinct colors, two players Alice and Bob, with Alice moving first, alternately select an uncolored edge e of G and assign it a color different from the colors of edges adjacent to e. Bob wins if, at any stage of the game, there is an uncolored edge adjacent to colored edges in all t colors; otherwise Alice wins. Note that when Alice wins, all edges of G are properly colored. The game chromatic index of a graph G is the minimum number of colors for which Alice has a winning strategy. In this paper, we study the edge coloring game on k‐degenerate graphs. We prove that the game chromatic index of a k‐degenerate graph is at most Δ + 3k − 1, where Δ is the maximum vertex degree of the graph. We also show that the game chromatic index of a forest of maximum degree 3 is at most 4 when the forest contains an odd number of edges. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 144–155, 2001  相似文献   

11.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

12.
An Erratum has been published for this article in Journal of Graph Theory 48: 329–330, 2005 . Let M be a set of positive integers. The distance graph generated by M, denoted by G(Z, M), has the set Z of all integers as the vertex set, and edges ij whenever |i?j| ∈ M. We investigate the fractional chromatic number and the circular chromatic number for distance graphs, and discuss their close connections with some number theory problems. In particular, we determine the fractional chromatic number and the circular chromatic number for all distance graphs G(Z, M) with clique size at least |M|, except for one case of such graphs. For the exceptional case, a lower bound for the fractional chromatic number and an upper bound for the circular chromatic number are presented; these bounds are sharp enough to determine the chromatic number for such graphs. Our results confirm a conjecture of Rabinowitz and Proulx 22 on the density of integral sets with missing differences, and generalize some known results on the circular chromatic number of distance graphs and the parameter involved in the Wills' conjecture 26 (also known as the “lonely runner conjecture” 1 ). © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 129–146, 2004  相似文献   

13.
Given a graph G whose set of vertices is a Polish space X, the weak Borel chromatic number of G is the least size of a family of pairwise disjoint G ‐independent Borel sets that covers all of X. Here a set of vertices of a graph G is independent if no two vertices in the set are connected by an edge. We show that it is consistent with an arbitrarily large size of the continuum that every closed graph on a Polish space either has a perfect clique or has a weak Borel chromatic number of at most ?1. We observe that some weak version of Todorcevic's Open Coloring Axiom for closed colorings follows from MA. Slightly weaker results hold for Fσ‐graphs. In particular, it is consistent with an arbitrarily large size of the continuum that every locally countable Fσ‐graph has a Borel chromatic number of at most ?1. We refute various reasonable generalizations of these results to hypergraphs (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
《Journal of Graph Theory》2018,89(3):304-326
A famous conjecture of Gyárfás and Sumner states for any tree T and integer k, if the chromatic number of a graph is large enough, either the graph contains a clique of size k or it contains T as an induced subgraph. We discuss some results and open problems about extensions of this conjecture to oriented graphs. We conjecture that for every oriented star S and integer k, if the chromatic number of a digraph is large enough, either the digraph contains a clique of size k or it contains S as an induced subgraph. As an evidence, we prove that for any oriented star S, every oriented graph with sufficiently large chromatic number contains either a transitive tournament of order 3 or S as an induced subdigraph. We then study for which sets of orientations of P4 (the path on four vertices) similar statements hold. We establish some positive and negative results.  相似文献   

15.
16.
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices vi and vj in V(G) of G, recall that G+vivj is the supergraph formed from G by adding an edge between vertices vi and vj. Denote the Harary index of G and G+vivj by H(G) and H(G+vivj), respectively. We obtain lower and upper bounds on H(G+vivj)−H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained.  相似文献   

17.
Let G be any graph, and also let Δ(G), χ(G) and α(G) denote the maximum degree, the chromatic number and the independence number of G, respectively. A chromatic coloring of G is a proper coloring of G using χ(G) colors. A color class in a proper coloring of G is maximum if it has size α(G). In this paper, we prove that if a graph G (not necessarily connected) satisfies χ(G)≥Δ(G), then there exists a chromatic coloring of G in which some color class is maximum. This cannot be guaranteed if χ(G)<Δ(G). We shall also give some other extensions.  相似文献   

18.
A deBruijn sequence of orderk, or a k-deBruijn sequence, over an alphabet A is a sequence of length |A|k in which the last element is considered adjacent to the first and every possible k-tuple from A appears exactly once as a string of k-consecutive elements in the sequence. We will say that a cyclic sequence is deBruijn-like if for some k, each of the consecutive k-element substrings is distinct.A vertex coloring χ:V(G)→[k] of a graph G is said to be proper if no pair of adjacent vertices in G receive the same color. Let C(v;χ) denote the multiset of colors assigned by a coloring χ to the neighbors of vertex v. A proper coloring χ of G is irregular if χ(u)=χ(v) implies that C(u;χ)≠C(v;χ). The minimum number of colors needed to irregularly color G is called the irregular chromatic number of G. The notion of the irregular chromatic number pairs nicely with other parameters aimed at distinguishing the vertices of a graph. In this paper, we demonstrate a connection between the irregular chromatic number of cycles and the existence of certain deBruijn-like sequences. We then determine the exact irregular chromatic number of Cn and Pn for n≥3, thus verifying two conjectures given by Okamoto, Radcliffe and Zhang.  相似文献   

19.
《Discrete Mathematics》2023,346(1):113162
The graph coloring game is a two-player game in which the two players properly color an uncolored vertex of G alternately. The first player wins the game if all vertices of G are colored, and the second wins otherwise. The game chromatic number of a graph G is the minimum integer k such that the first player has a winning strategy for the graph coloring game on G with k colors. There is a lot of literature on the game chromatic number of graph products, e.g., the Cartesian product and the lexicographic product. In this paper, we investigate the game chromatic number of the strong product of graphs, which is one of major graph products. In particular, we completely determine the game chromatic number of the strong product of a double star and a complete graph. Moreover, we estimate the game chromatic number of some King's graphs, which are the strong products of two paths.  相似文献   

20.
The distinguishing chromatic number of a graph, G, is the minimum number of colours required to properly colour the vertices of G so that the only automorphism of G that preserves colours is the identity. There are many classes of graphs for which the distinguishing chromatic number has been studied, including Cartesian products of complete graphs (Jerebic and Klav?ar, 2010). In this paper we determine the distinguishing chromatic number of the complement of the Cartesian product of complete graphs, providing an interesting class of graphs, some of which have distinguishing chromatic number equal to the chromatic number, and others for which the difference between the distinguishing chromatic number and chromatic number can be arbitrarily large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号