首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine the relationship between different types of professional development, teachers' instructional practices, and the achievement of students in science and mathematics. The types of professional development studied included immersion, examining practice, curriculum implementation, curriculum development, and collaborative work. Data regarding teachers' instructional practices and the amount of professional development were collected using teacher surveys. Ninety‐four middle school science teachers and 104 middle school mathematics teachers participated in the study. Student achievement was measured using eighth grade state science and mathematics achievement test data. Regression analyses suggested that for both science and mathematics teachers, examining practice and curriculum development were significantly related to the use of standards‐based instructional practices. Only curriculum development for mathematics teachers was significantly related to student achievement. Implications of results for the professional development of science and mathematics teachers are discussed.  相似文献   

2.
The study examined relationships among key domains of science instruction with English language learning (ELL) students based on teachers' perceptions of their classroom practices (i.e., what they think they do) and actual classroom practices (i.e., what they are observed doing). The four domains under investigation included: (1) teachers' knowledge of science content; (2) teaching practices to support scientific understanding; (3) teaching practices to support scientific inquiry; and (4) teaching practices to support English language development during science instruction. The study involved 38 third‐grade teachers participating in the first‐year implementation of a professional development intervention aimed at improving science and literacy achievement of ELL students in urban elementary schools. Based on teachers' self‐reports, practices for understanding were related to practices for inquiry and practices for English language development. Based on classroom observations in the fall and spring, practices for understanding were related to practices for inquiry, practices for English language development, and teacher knowledge of science content. However, we found a weak to non‐existent relationship between teachers' self‐reports and observations of their practices.  相似文献   

3.
The press to integrate mathematics and science comes from researchers, business leaders, and educators, yet research that examines ways to support teachers in relating these disciplines is scant. Using research on science and mathematics professional development, we designed a professional development project to help elementary teachers improve their teaching of mathematics and science by strategically connecting these disciplines. The purposes of this study are: (a) to identify changes in teachers' confidence and practice after participating in the professional development and (b) to identify different ways to connect mathematics and science during the professional development. We use a Likert‐scale survey to assess changes in teachers' confidence related to teaching mathematics and science. In addition, we report on a thematic analysis of teachers' written responses to open‐ended questions that probed teachers' perceived changes in practice. We analyze field notes from observations of project workshops to document different types of opportunities for connecting mathematics and science. We conclude with implications for future professional development that connects mathematics and science in meaningful ways, as well as suggestions for future research.  相似文献   

4.
Assessing Beginning Secondary Science Teachers' PCK: Pilot Year Results   总被引:1,自引:0,他引:1  
While it is generally accepted that pedagogical content knowledge (PCK) is an essential knowledge base for science teachers, educational researchers are not clear on how it develops. Previous researchers have suggested that classroom practice may play a significant role. Therefore, it is important to look at beginning teachers' PCK and its development during the first years in the classroom. Using the pilot year data from a larger study, we developed and employed a rubric to help understand 24 beginning secondary science teachers ‘PCK, focusing on two categories: Knowledge of Student Learning and Knowledge of Instructional Strategies. The results of analysis did not show a statistically significant change between the groups, but when comparisons were made with all of the teachers, the category of Knowledge of Students Learning did significantly change. In this paper we report the results of the pilot year data, provide examples of how we employed the rubric to assess teachers’ PCK, and discuss how this study benefits understanding beginning teachers' PCK.  相似文献   

5.
6.
The Indiana Science Initiative (ISI) is a systemic effort to reform K–8 science education. The program provides teachers with professional development, reform‐oriented science modules, and materials support. To examine the impact of the initiative's professional development, a participant observation study was conducted in the program's pilot year. Five teachers in grades 3–6 were observed and interviewed as they implemented the ISI‐provided modules. Analysis of the observation data revealed that the teachers incorporated each of the features of inquiry science instruction. However, they did not consistently teach in a way that was aligned with the intent of the ISI. Examination of interview data provided insight into influences on teachers' use of inquiry with the ISI‐provided modules. These data revealed that teachers were aware of the intent of the ISI and attempted to align their instruction. However, teachers were influenced by their perceptions of students' behavior and abilities as well as timing and the appropriate level of teacher control needed to facilitate science instruction. The research suggests that professional development activities should prepare teachers to help learners evaluate explanations against alternatives, connect explanations to scientific knowledge, and provide strategies to address teachers' perceptions of students, timing, and teacher control.  相似文献   

7.
This study adds to our understanding of science and mathematics teacher leadership in rural schools. Through In Vivo and Concept coding of teacher interviews, we investigated 20 secondary science and mathematics teachers' perceptions of rural teacher leadership during their participation in a three-year professional development program. As the teachers developed as teacher leaders, they broadened their focus from improving their own students' learning to sharing new knowledge learned through the program with other teachers both informally and formally. We compared our program components to the Teacher Leader Model Standards and added an emphasis on the importance of disciplinary content knowledge. We also identified patterns in science and mathematics teacher leadership that are contextually connected to teachers' instruction in rural high poverty schools. Rural teacher leadership included the importance of building strong teacher–student relationships, providing new academic opportunities for students, encouraging students' success, and building community connections.  相似文献   

8.
This qualitative case study sought to investigate what relationship exists between teaching efficacy and cultural efficacy of novice science teachers in high‐needs, high‐minority urban schools. One major theme—the importance of establishing positive teacher–student relationships—surrounding teaching efficacy in the context of cultural efficacy emerged. The data sources included: (a) teachers' responses to a focus group interview conducted at the end of their first year, (b) written reports and documentation from university‐based field supervisors' observations during the teachers' first year, and (c) teachers' self‐reported responses on the Science Teaching Efficacy Belief Instrument designed to measure science teaching efficacy. Final analysis of the data reflects a strong relationship between teaching efficacy and practice within the context of culture. The results of this study also indicated an existing relationship between teaching efficacy and cultural efficacy through cultural connections with students. Encouraging the development of teacher efficacy in the context of cultural efficacy becomes important at all levels of teacher preparation, especially to ensure the retention of high‐quality science teachers in high‐needs schools.  相似文献   

9.
With increased study of teachers' beliefs about science and mathematics teaching in recent years, there is a need for instruments that assess beliefs in both content areas. Moreover, early field experiences in schools and professional development efforts may influence the beliefs that preservice and in‐service teachers develop, and instruments for this purpose are limited. This article describes the development and validation of the Confidence, Commitment, Collaboration, and Student thinking in Mathematics and Science (CCCSMS) beliefs scales, a set of 10 six‐item scales. Collectively, these scales measure teachers' self‐confidence in doing and teaching science and mathematics, confidence in understanding children's thinking and building models of that thinking, commitment to teaching science and mathematics from a standards‐based perspective, and commitment to collaborating with peers. The scales represent an efficient and effective way of assessing beliefs of large groups. Although this article focuses predominantly on development of the scales, results from initial use indicate that there are positive correlations between beliefs related to mathematics and beliefs related to science, but the correlations are low enough to show that many teachers think differently about the two subjects.  相似文献   

10.
Professional development for teachers has become a key component for reform in teaching, learning, and curriculum change. This report describes a model of professional development designed to improve the skills and knowledge of teams of special education and regular education teachers in science, mathematics, and technology instruction. The comprehensive model included summer and academic year content and methodology-focused workshops and summer “practician” experiences. It was designed to link those factors impacting teacher practices and interventions with teachers' beliefs in instruction. The training component for teachers included opportunities for collaborative teaching, upgrading knowledge of math and science subject matter, and identifying, integrating, and practicing alternative approaches for teaching science and math that address the needs of special education students, with a focus on techniques for adapting instruction to specific disabilities. The program led to development of coping skills and persistence in the teaching of science and math for all students. As a result, strong efficacy expectations have been developed through repeated experiences of success with children in a classroom environment. Remaining issues still to be addressed include classroom management, teaching in a heterogeneous classroom, and further improvement of content expertise of teachers.  相似文献   

11.
A challenge for public schools is to successfully support and professionally develop early career teachers (ECTs) and thereby prepare them for long and successful careers in education. The purpose of this qualitative research study was to describe how the professional practices of early career science and mathematics teachers, some of whom are career changers, were influenced by their interactions with mentors and professional communities. Topics examined included the contextual elements that influenced the ECTs’ interactions with mentors and professional communities, how teachers positioned themselves within multiple professional communities, and how they perceived these experiences had influenced the development of their teaching practice. An extensive semi-structured interview of the ECTs generated data that were analyzed to identify emergent themes and patterns. The findings of this study indicated that navigating professional communities and interacting with mentors had influenced the ECTs’ decisions to adopt important components of a learner-centered approach to teaching that included engaging students in active learning processes, utilizing formative assessment, and responding to students' individual needs. These findings have implications for school policies and approaches related to supporting and professionally developing unique cohorts of ECTs.  相似文献   

12.
Reforms in mathematics education call for K‐12 teachers to employ standards‐based pedagogies, which embody the National Council for Teachers of Mathematics' principles and standards. In order to effectively support teachers' implementation of standards‐based curricula, professional development must be provided that meets teachers' needs. The professional development program in this study focused on the implementation of a standards‐based mathematics curriculum entitled Investigations in Number, Data, and Space (Investigations). This study uses Guskey's framework as a guide to examining teachers' perceptions of the impact of the professional development that they received; their perceptions of mathematics teaching and learning; and how elements of the professional development translated into practice. Twenty‐two participants were randomly selected from the 53 professional development participants to be interviewed and observed during their mathematics teaching. Using a constant comparison method, the data sources in this study highlighted themes surrounding teachers' experiences with professional development and the implementation of the curricula. The analysis of the data sources in this study highlighted themes surrounding teachers' experiences with professional development: teachers as learners, teachers as self‐evaluators, shifting paradigms, enactment of professional development content into practice, and the influence of the state standardized mathematics test. The results of this study have several implications for future professional development and also highlight some of the more general issues that teachers face when attempting to enact new knowledge and skills into their practice.  相似文献   

13.
Science is a dynamic discipline, representative of the nature of science. Yet, young science students continue to think everything is already discovered. In this study, we examine why students are not actively doing science. From professional development to student engagement, how are classrooms and students changing as we increase teachers' content knowledge? Teaching practices modeled in professional development can change what occurs in the classroom. Our study was designed to probe differences in two different types of professional development programs both focused on content knowledge. We found that what is modeled by the professional developers has a profound effect on the direction of the classroom. This matched controlled study found that teachers reflect the teaching practice modeled by professional developers through their individual classroom teaching practices. A significant difference was found in cognitive activities and questioning skills between teachers in a professional development program modeling authentic inquiry versus the teachers in a professional development modeling simulated inquiry. While both groups increased the amount of overall inquiry used in the classroom, students whose teachers were in authentic inquiry professional development were engaged in higher cognitive activities and questioning skills. If students are engaged in dynamic classrooms, searching for answers to students' questions, perhaps they will understand that science is a dynamic discipline.  相似文献   

14.
The use of cooperative learning is a recurring theme in recommendations for science education, and numerous studies have documented its effectiveness in the classroom. However, teachers' beliefs about using cooperative learning may play an important role in its ultimate implementation. The primary purpose of this study was to examine the factors influencing K-12 teachers' intentions to use cooperative learning in their science instruction. The Theory of Planned Behavior was used in this study to assess the potential influence of three belief-based constructs: attitude, subjective norm, and perceived control. Salient beliefs about cooperative learning were first identified, scales were developed to measure the theory constructs, and a random sample of K-12 teachers responded to the scales. Two constructs, attitude and perceived behavioral control, were found to be significant influences and accounted for 62% of the variance in the teachers' intent to use cooperative learning in their own science instruction. Specific suggestions for addressing beliefs about cooperative learning and professional development strategies are offered.  相似文献   

15.
With the increasing emphasis on integrating engineering into K‐12 classrooms to help meet the needs of our complex and multidisciplinary society, there is an urgent need to investigate teachers' engineering‐focused professional development experiences as they relate to teacher learning, implementation, and student achievement. This study addresses this need by examining the effects of a professional development program focused on engineering integration, and how teachers chose to implement engineering in their classrooms as a result of the professional development. 198 teachers in grades 3–6 from 43 schools in 17 districts participated in a yearlong professional development program designed to help integrate the new state science standards, with a focus on engineering, into their teaching. Posters including lesson plans and student artifacts were used to assess teachers' engineering practices and the implementation in their classrooms. Results indicated that the majority of the teachers who participated in the professional development were able to effectively implement engineering design lessons in their classrooms suggesting that the teachers' success in implementing engineering lessons in their classroom was closely related to the structure of the professional development program.  相似文献   

16.
The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student teachers' attitudes toward science. Data were collected by administering the “Science Teaching Efficacy Beliefs Instrument” and “Attitudes toward Science Scale” to 282 preservice primary teachers (147 freshmen, 135 seniors). Statistical techniques such as means and t‐test were used to analyze the data. Results of the study showed that the primary teacher education program has a medium positive effect on science teaching efficacy beliefs of the primary preservice teachers (t = 4.791, p = .000) and that there were no gender differences in terms of efficacy beliefs. Results also indicated that preservice primary teachers' attitudes toward science were moderately positive and differ by class level. Fourth‐year preservice teachers' attitudes toward science were found to be significantly more positive than the first years (t = 5.494, p = .000). There were no gender differences in attitudes toward science.  相似文献   

17.
The purpose of this study was to assess the impact a community‐based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an afterschool science program that provided them extended opportunities to practice their science teaching skills. Three preservice teachers were followed to examine and evaluate the transfer of this experience to their student teaching classroom. Investigation methods included field observations and semi‐structured, individual interviews. Findings indicate that preservice teachers expanded their ideas of science inquiry instruction to include multiple modes of formative assessment, while also struggling with the desire to give students the correct answer. While the participants' experiences are few in number, the potential of afterschool teaching experience serving as an effective learning experience in preservice teacher preparation is significant. With the constraints of high‐stakes testing, community‐based service learning teaching opportunities for elementary and middle‐school preservice teachers can support both the development and refinement of inquiry instruction skills.  相似文献   

18.
Two related case studies of secondary mathematics teachers examine the roles and conditions helpful in initiating, directing, and/or supporting teachers' own professional development. Using multiple data sources from school‐based and professional settings, we applied analytic induction to identify patterns of similarities and differences in teachers' experiences and developmental trajectories. Findings revealed how the teachers served as brokers in their own development process and how attitude, attention, and awareness played important roles in teacher learning. As the teachers initiated learning processes, they demonstrated awareness of broader educational contexts that support learning by identifying external policies and priorities that aligned with teachers' attitudes. They then used these external priorities as boundary objects to broker for teachers' learning, including other teachers' learning. They attended to learning needs in directing a plan for learning activities, rather than using externally mandated goals for changing practice (e.g., an external focus on improving students' tests scores). These cases suggest that in structuring professional learning, opportunities to self‐identify learning needs should be part of the process, and external supports can become more powerful when teachers play a brokering role in relating these supports to their immediate contexts. Further implications for professional development processes are explored.  相似文献   

19.
Meaningful and effective training and professional development programs for teachers are key to the improvement of teaching practices in our schools. In this paper, the authors offer a meta‐synthesis of the literature on the role of reflection for mathematics and science teachers within the context of professional development. The authors frame this review using Desimone's core components of professional development, a research‐based framework emphasizing components tied to positive outcomes (content focus, active learning, coherence, duration, and collective participation). A synthesis of literature in this area shows that few training and professional development programs include all five components of Desimone's core conceptual framework for effective professional development linked to positive outcomes. Further, the authors find in their review that increased contact hours included in a professional development program produce an increase in frequency, duration, and depth of reflective practice for teachers.  相似文献   

20.
The Teacher Academy in the Natural Sciences (TANS) provided middle school (U.S. Grades 6–8) teachers (N = 81) with intensive professional development (PD) in chemistry, geosciences, and physics, with teachers enrolled in one scientific discipline per year. Because some teachers were retained and rotated into different disciplines, the TANS program investigated retention of science content 1–2 years beyond an instructional year. All teacher participants exhibited significant gains (p < .001), in chemistry, geosciences, or physics content, between their incoming knowledge and the 10‐day summer academy's conclusion. Chemistry and geosciences content were retained until the end of the PD year. Physics participants reported a significant loss (p < .001), although gains from teachers' incoming knowledge were still significant. When retention was measured beyond the instructional year, only the geosciences content was retained. Chemistry and physics gains were not retained, with no significant differences between incoming teachers' knowledge and content 1–2 years post instruction. Our research indicates that science content support is needed after PD programs, and importantly, that the support differs between scientific disciplines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号