首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ordered mesoporous silica material MCM-41 with covalently anchored boric acid groups located inside the mesochannels has been utilized as an acid catalyst for the ‘green’ synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-one derivatives under solvent-free condition. This novel synthetic method offers advantages, such as excellent yields, simple reaction procedure, short reaction times and mild reaction conditions.  相似文献   

2.
A convenient and efficient one-pot method for the synthesis of 2-amino-tetrahydro-4H-chromene and 2-amino-4H-benzo[h]-chromene derivatives has been developed using a catalytic amount of amino-functionalized MCM-41 in aqueous medium. This efficient technique has the advantages of giving 4H-tetrahydro-chromene and 4H-benzo[h]chromene building blocks using a reusable catalyst in good to excellent yields, to be completed in short reaction times with a simple product isolation procedure.  相似文献   

3.
A new hybrid catalyst has been prepared by tethering a nickel(II) Schiff-base complex via post-synthesis modification of mesoporous silica, MCM-41. The Schiff-base has been derived from salicylaldehyde and 3-aminopropyltriethoxysilane (3-APTES) which is chemically anchored on MCM-41 via silicon alkoxide route. The anchored Schiff-bases imposed a stable planar coordination geometry around the central nickel ions. The catalyst has been characterized by elemental analysis, FT-IR, UV-Vis, small angle X-ray diffraction (SAX) and transmission electron microscopy (TEM) studies. The SAX and TEM measurement showed the mesoporosity of the catalyst. The activity of the catalyst has been assessed in the epoxidation of olefins using tert-butyl-hydroperoxide (tert-BuOOH) as oxidant in heterogeneous condition. Immobilized nickel catalyst was found to be catalytically more active and selective compared to the similar type of nickel(II) complex as well as Ni(NO3)2·6H2O in homogeneous media. The catalyst can be recycled and reused several times without significant loss of activity.  相似文献   

4.
This paper investigates the catalytic activity of MCM-41 synthesized via silatrane route and Ru/MCM-41 in waste tire pyrolysis. The experimental results showed that the presence of catalysts strongly influenced the yield and nature of products. Namely, the gas yield increased at the expense of liquid yield. In addition, a considerable high yield of light olefins, 4 times higher than non-catalytic pyrolysis, can be achieved for Ru/MCM-41 catalyst. Furthermore, the uses of catalysts produced much lighter oil and there was a drastic increase in the concentration of single ring aromatics in accordance to a reduction in polycyclic aromatic compounds in the derived oils. Ru/MCM-41 produced the lightest oil and the oil has the highest concentration of mono-aromatics. The high activity of catalysts, particularly Ru/MCM-41 was discussed in relation with the catalyst characterization results obtained from various techniques including TPD-NH3, H2-chemisorption, XRD, N2-adsorption/desorption analysis, and TPO.  相似文献   

5.
MCM-41固载胺钯配合物的制备及对Heck反应催化性能的研究   总被引:1,自引:0,他引:1  
以MCM-41分子筛作为固载材料, 经氨基功能化后与各种钯化合物形成一系列MCM-41载钯配合物, 采用XRD, XPS等技术对其结构及表面性能进行了表征, 研究了催化剂的制备条件等因素对催化Heck芳基化反应性能的影响; 以共轭烯烃和各种芳基碘的Heck芳基化反应考察了MCM~NH2•Pd(0, II)配合物的催化性能. 结果表明, MCM-41的结构没有被破坏, MCM~NH2载钯配合物具有较高的催化活性和立体选择性, 在较低的温度(70~90 ℃)下, 可高产率地生成一系列取代的反式产物.  相似文献   

6.
RuO2 nanoparticles were readily prepared from RuCl3·3H2O via the formation of Ru-hydroxide precursor, followed by calcination at 550 °C. Under similar conditions, uniform dispersion of spherical RuO2 nanoparticles over the surface of MCM-41 was also obtained. The synthesized materials were characterized by transmission electron microscopy (TEM), infrared spectroscopy (FT-IR), X-ray diffraction (XRD), BET surface area measurements, and magnetic measurements (VSM). The obtained RuO2 nanoparticles found application as catalyst in preparation of indolo[3,2-a]carbazoles from the reaction of indoles and benzils. Under mild reaction conditions, satisfactory yields of the desired products were obtained. Stabilization of RuO2 nanoparticles over the surface of MCM-41 (RuO2–MCM41), however, had the advantage of easy recycling, although a slight decrease in efficiency after five successive runs was observed.  相似文献   

7.
Peng Wu 《Acta Physico》2008,24(3):369-374
It was found that Si-MCM-41 mesoporous molecular sieves as a support of noble metal Pt could be used for the selective catalytic reduction of NO by hydrogen (H2-SCR) under lean-burn conditions. Pt/Si-MCM-41, together with Pt/Si-ZSM-5 and Pt/SiO2, was characterized by X-ray diffraction analysis (XRD), nitrogen adsorption/desorption, hydrogen adsorption, and transmission electron microscopy (TEM). The results indicated that Pt/Si-MCM-41 had the best H2-SCR activity in comparison with Pt/Si-ZSM-5 and Pt/SiO2 catalysts and that the maximum conversion of NO was up to 60.1% at 100 °C and a gas hourly space velocity (GHSV) of 80000 h-1 under lean-burn conditions. Characterization showed that the large surface area and pore volume of MCM-41 favored the dispersion of Pt. The maximum NO conversion of Pt/Si-MCM-41 catalyst decreased obviously to 15% at 120 °C when the pore structure of Si-MCM-41 support was destroyed. The reaction mechanism over Pt/Si-MCM-41 was investigated using in situ diffuse reflectance infrared spectroscopy (DRIFTS), which revealed that the main reaction intermediates should be nitrate species during NO reduction.  相似文献   

8.
HPWA/MCM-41 mesoporous molecular sieves of appropriate ratios were prepared by loading HPWA on siliceous MCM-41 by the wet impregnation method. The prepared HPWA/MCM-41 materials were characterized by X-ray diffraction analysis (XRD) and BET surface area and FT-IR measurements. The morphology of mesoporous materials was studied by TEM observation. The catalytic activity of the above materials was tested for the condensation of dimedone (active methylene carbonyl compound) and various aromatic aldehyes under liquid phase conditions at 90 °C. The products were confirmed by FT-IR, 1H NMR and 13C NMR studies. HPWA supported MCM-41 catalysts catalyses efficiently the condensation of dimedone and aromatic aldehydes in ethanol and other solvents under liquid phase conditions to afford the corresponding xanthenedione derivatives. Activities of the catalysts follow the order: HPWA/MCM-41(20 wt.%) > HPWA/MCM-41(30 wt.%) > H3PW12O40·nH2O > HPWA/MCM-41(10 wt.%) > HPWA/SiO2 (20 wt.%) > HM (12) > Hβ (8) > Al-MCM-41 (50). Various advantages associated with these protocols include simple workup procedure, short reaction times, high product yields and easy recovery and reusability of the catalyst.  相似文献   

9.
Hong Zhao  Yue Wang  Shouri Sheng 《Tetrahedron》2008,64(32):7517-7523
A Stille coupling reaction of organostannanes with organic halides has been developed in the presence of a catalytic amount of MCM-41-supported bidentate phosphine palladium(0) complex (0.5 mol %) in DMF/H2O (9:1) under air atmosphere in high yields. This polymeric palladium catalyst exhibits higher activity than Pd(PPh3)4 and can be reused at least 10 times without any decrease in activity.  相似文献   

10.
An efficient method for preparation of arylaminotetrazoles is reported using natrolite zeolite as a natural catalyst. Generally, isomer of 5-arylamino-1H-tetrazole can be obtained from arylcyanamides carrying electron-withdrawing substituent on aryl ring and as the electropositivity of substituent is increased, the product is shifted toward the isomer of 1-aryl-5-amino-1H-tetrazole. This method has the advantages of high yields, simple methodology, short reaction times and easy work-up. The catalyst can be recovered by simple filtration and reused in good yields.  相似文献   

11.
The heterogeneous carbonyl allylation of aldehydes and ketones with allylic chlorides was achieved in DMF using SnCl2 as reducing agent at 25-40 °C in the presence of a 3-(2-aminoethylamino)propyl-functionalized MCM-41-immobilized palladium(II) complex [MCM-41-2N-Pd(II)], yielding a variety of homoallylic alcohols in good to high yields. This heterogeneous palladium catalyst exhibited higher activity than (N-propylethylenediamine)PdCl2 and can be recovered and recycled by a simple filtration of the reaction solution and used for at least 5 consecutive trials without any decreases in activity.  相似文献   

12.
Silica gel-supported H6P2W18O62·24H2O is an efficient and recyclable catalyst for the synthesis of biologically important molecules. Several substituted N-sulfonyl-1,2,3,4-tetrahydroisoquinolines and ring analogues can be prepared in very good yields and purity by direct reaction of N-aralkylsulfonamides and sym-trioxane by a Pictet-Spengler reaction in the presence of a catalytic amount of silica gel-supported H6P2W18O62·24H2O. Reactions were performed in a low volume of toluene, at 70 °C and for a short time, typically 15 to 30 min. The title heterocyclic compounds were prepared in very good yields (60%–95%) using the described procedure results in a clean and useful alternative, which has the advantages of a greener methodology with operative simplicity, use of a reusable and non-corrosive solid catalyst, soft reaction conditions, low reaction times, and good yields.  相似文献   

13.
Zinc complex with 2-amino-3-hydroxy-pyridine ligand was immobilized onto chloropropyl-modified mesoporous silica MCM-41 (CP-MCM-41) via post-grafting method. The prepared catalyst has been characterized by low-angle X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectrum, atomic adsorption spectroscopy and thermogravimetric analysis. The immobilized nano-structured material showed very good catalytic activity and excellent recycling efficiencies for the oxidation reaction of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides in the presence of aqueous hydrogen peroxide as oxidant at room temperature and the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives in water.  相似文献   

14.
Carbon paste electrode modified with aminated Mobil Catalytic Material Number 41 (MCM-41) was prepared and used for immobilization of K3[Fe(CN)6] in acidic medium, and then electrochemical behavior of modified electrode containing ferricyanide was studied in detail, including pH-dependence and scan rate effect. Cyclic voltammetry studies showed that the electrode reaction is a surface-controlled process at the scan rate range from 5 to 60 mV s−1. Also, the electrocatalytic behavior of modified electrode toward the reduction of H2O2 is reported and the effect of pH on catalytic peak current was discussed. According to experimental results, with increasing solution pH, the catalytic effect of this modified electrode is decreased. Catalytic reduction current of H2O2 increases linearly with its concentration. It has been demonstrated that ferricyanide immobilized on the aminated MCM-41 is a stable catalyst for the electrocatalytic reduction of H2O2.  相似文献   

15.
MCM-41 anchored sulfonic acid (MCM-41–SO3H) was found to be a highly efficient and recoverable heterogeneous catalyst for the three-component Strecker reaction of aldehydes or ketones and diverse amines using trimethylsilyl cyanide (TMSCN) to afford the corresponding α-amino nitriles under mild conditions in high to quantitative yields. The simple experimental procedure along with easy recovery and reusability of the catalyst has led to development of a clean and environmentally friendly approach for the synthesis of α-amino nitriles.  相似文献   

16.
Regioselective ring opening of aliphatic and aromatic epoxides with nitrogen heterocycles such as indoles and imidazoles was accelerated using an ultrasonic technique as a green approach. An optimized procedure with the catalyst of choice, MCM-41, represents a real alternative to the conventional reaction protocols owing to the catalyst recyclability, simplicity, green conditions and time-saving aspects.  相似文献   

17.
This paper describes the heterogenization of a tetramethylmonocyclopentadienyl titanium (IV) trichloride complex, [Ti(η5-C5HMe4)Cl3] onto mesoporous MCM-41. Its immobilization has been performed via a straightforward grafting process of the organometallic precursor in the pores of an MCM-41 host material and by reaction with previously organomodified MCM-41 material with a hydroxyl triazine based compound. Applying all-silica MCM-41 hosts, stable and heterogeneous liquid-phase epoxidation catalysts are obtained. Powder X-ray diffraction and nitrogen adsorption-desorption analysis indicated that the structural integrity of the support has been preserved during the titanium complex immobilization. These materials have been also extensively characterized using diffuse reflectance UV-vis, 13C and 28Si MAS NMR and FT-IR spectroscopy. With these techniques the strong adsorption of the intact catalytic complex within an all-silica MCM-41 host is demonstrated. These materials have been tested as catalyst for the epoxidation of aliphatic and aromatic alkenes with TBHP as oxidant exhibiting a significant selectivity toward the epoxide with negligible leaching of titanium species. The conversion values are moderated, being the olefin trend reactivity 1-octene > cyclohexene > styrene.  相似文献   

18.
An efficient and practical route to 5-alkynyl-1,2,3-triazoles has been developed via heterogeneous tandem CuAAC/alkynylation reaction of organic azides, alkynes and 1-bromoalkynes by using an L-proline-functionalized MCM-41-anchored copper(I) complex [L-Proline-MCM-41-CuCl] as catalyst under mild conditions. The reaction produces a wide variety of 5-alkynyl-1,2,3-triazoles in mostly good to excellent yields. The new immobilized copper(I) complex can be readily prepared from commercially available and inexpensive reagents and displays the same catalytic activity as CuCl. The L-Proline-MCM-41-CuCl catalyst is also easy to recover via a simple filtration process and can be reused at least seven times without apparent loss of activity.  相似文献   

19.
FT-IR study of NO and C3H6 adsorption, co-adsorption and interaction in the presence of oxygen were performed in order to estimate the catalytic behaviour of Au and V-containing MCM-41 materials in NO-SCR with propene. MCM-41 were modified with gold, vanadium and niobium by their introduction during the synthesis (co-precipitation) carried out with the use of HCl or H2SO4 as pH adjustment agent. The texture/structure properties of the prepared samples were investigated by N2 adsorption, XRD, XPS and TEM techniques. It has been found that the nature of acid used for the pH adjustment during the synthesis determines the gold particles size and dispersion and influences the interaction of NO+O2+C3H6 with the catalyst surfaces. In both types of AuVMCM-41 catalysts, the SCR reaction route occurs via NO2 formation. In the case of AuVMCM-41(HCl) and AuVNbMCM-41(HCl) nitrites are formed and stored, and upon heating NO2 is released. These kinds of nitrites are not formed on AuVMCM-41(H2SO4) and AuVNbMCM-41(H2SO4). Instead of that NO2 is chemisorbed on metallic gold, niobium and vanadium species and reacts with propene and/or oxygenates.  相似文献   

20.
As-synthesized MCM-41 was used as a reusable, heterogeneous catalyst for the eco-friendly synthesis of cyclic carbonate precursors of polycarbonates via a cycloaddition reaction of CO2 with epoxides. This catalyst is also efficient for the synthesis of alkyl and aryl carbamate precursors of polyurethanes via the reaction of amines, CO2 and alkyl halides. Both these reactions were carried out under mild conditions and without using any solvent or co-catalyst. CO2 is utilized as a raw material replacement for toxic phosgene in the conventional synthesis of these chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号