首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The study examined relationships among key domains of science instruction with English language learning (ELL) students based on teachers' perceptions of their classroom practices (i.e., what they think they do) and actual classroom practices (i.e., what they are observed doing). The four domains under investigation included: (1) teachers' knowledge of science content; (2) teaching practices to support scientific understanding; (3) teaching practices to support scientific inquiry; and (4) teaching practices to support English language development during science instruction. The study involved 38 third‐grade teachers participating in the first‐year implementation of a professional development intervention aimed at improving science and literacy achievement of ELL students in urban elementary schools. Based on teachers' self‐reports, practices for understanding were related to practices for inquiry and practices for English language development. Based on classroom observations in the fall and spring, practices for understanding were related to practices for inquiry, practices for English language development, and teacher knowledge of science content. However, we found a weak to non‐existent relationship between teachers' self‐reports and observations of their practices.  相似文献   

2.
This paper describes a subset of results from a large‐scale two‐year independent evaluation study conducted with the Scientists in School (SiS) outreach program and two large school boards in Ontario, Canada. Specifically, it explores the responses of elementary students (n= 811) from typically underrepresented groups in science (English language learners [ELL], girls, and students at low‐achieving schools) to the SiS outreach program. It explores responses related to enjoyment, interest, perceptions of role modeling, and future career choice in science. Compared to other students, findings suggest that girls and students from low‐achieving schools found the program more enjoyable and reported that it provided positive science role models. Students at schools with high ELL populations also reported higher levels of enjoyment and reported that the program helped get them excited about science.  相似文献   

3.
Within the field of science education, there remains little agreement as to the definition and characteristics of classroom inquiry. The emerging emphasis on scientific practices in science education reform discourse is underpinned by a need to better articulate the constituent elements of inquiry‐based science. While a small number of observation‐based instruments have been developed to characterize science learning environments, few are explicitly aligned with theoretical constructs articulated by the National Research Council and/or have been substantially field‐tested. We employ a newly developed instrument, the Practices of Science Observation Protocol (P‐SOP), to investigate essential features of inquiry and scientific practices in which early learners engage in elementary classrooms. This research is part of a multiyear professional development program designed to support elementary teachers (K‐5) in a large, urban school district to learn to better engage students in scientific practices. Project teachers video‐recorded enacted science lessons (n = 124) which were used as data. Findings illustrate both essential features of inquiry and scientific practices observed in elementary classrooms, as well as establish the P‐SOP as a valid and reliable observation protocol. These findings have important implications for the design of elementary science learning environments and associated research and development efforts in the field.  相似文献   

4.
Capitalizing on Emerging Technologies: A Case Study of Classroom Blogging   总被引:1,自引:0,他引:1  
The challenge many teachers face is how to incorporate new technology into their classrooms that strengthens classroom learning by capitalizing on students’ media literacies. Blogs, a new and innovative technological tool, can be used in math and science classrooms to support student learning by capitalizing on students’ interests and familiarity with on‐line communication. This study explores the emerging blogging practices of one high school mathematics teacher and his class to explore issues of intent, use, and perceived value. Data sources for this case included one year's worth of blog content, an interview with the facilitating teacher, and students ‘perceptions of classroom blogging practices. Findings indicate that (1) teachers’ intentions focused on creating additional forms of participation as well as increasing student exposure time with content; (2) blogs were used in a wide variety of ways that likely afforded particular benefits; and (3) both teacher and students perceived the greater investment to be worthwhile. The findings are used to critically consider claims made in the literature about the potential of blogging to effectively support classroom learning.  相似文献   

5.
This report describes an evaluation project that aimed to assess the potential of two elementary science specialists, as compared to elementary classroom teachers, to realize the reforms vision for science instruction in elementary classrooms. Participant science specialist background, views of elementary science teaching, and planning and assessment practices were compared to those of regular elementary classroom teachers in the specialist district, as well as in a comparable district not employing specialists. Specialists' views and practices were better aligned with those envisioned by current national reform documents in science education. Despite the constraints imposed by the nature of a program evaluation, the present report provides evidence to suggest that students taught by the science specialists (a) were engaged in open‐ended, inquiry‐oriented, science‐based activities of the kind often advocated, but mostly absent, in elementary school, and (b) demonstrated problem solving and higher order and critical thinking skills. This report is the first to provide empirical support for the advocated “effectiveness” of elementary science specialists in achieving the visions espoused by current reform efforts.  相似文献   

6.
The role of language in mathematics teaching and learning is increasingly highlighted by standards and reform movements in the US. However, little is known about teachers’, and especially early career teachers’ (ECTs) practices and understandings related to language in mathematics instruction. This multiple case study explored the language-related understandings and practices of six ECTs in diverse elementary classrooms. Using iterative cycles of analysis, we found that all ECTs regularly attended to students’ mathematical vocabulary use and development. Yet, there was variability in ECTs’ focus on how to teach mathematical vocabulary, expectations for students’ precise use of mathematical terminology, and the use of multiple languages during instruction. These findings indicate that ECTs need more targeted support during teacher preparation and early career teaching in order to better support all students’ language development in the mathematics classroom.  相似文献   

7.
Early career science teachers are often assigned to classrooms with high numbers of English language learners (ELLs). For the underprepared early career science teacher, these circumstances are challenging. This study examines the changes in beliefs and practices of an early career science teacher who taught high numbers of ELLs in an urban setting. Victoria participated in the Alternative Support for Induction Science Teachers (ASIST) program during her initial two years of teaching. Our research team followed her over a three‐year period, and the data collected included classroom observations and interviews about her beliefs and practices. In addition, documents such as teacher evaluations and classroom artifacts were collected periodically for the purpose of triangulation. The analysis of the data revealed that with the support of the ASIST program, Victoria implemented inquiry lessons and utilized instructional materials that promoted language and science competencies for her ELLs. Conversely, standardized testing and her teaching assignment played a role in constraining the implementation of inquiry‐based practices. The results of this study call for collaborative efforts between university science educators and school administrators to provide professional development opportunities and support to build the capacity of early career science teachers of ELLs.  相似文献   

8.
9.
Ji Yeong I  Hyewon Chang 《ZDM》2014,46(6):939-951
The classroom culture of Korean schools has recently been changing as the population of linguistically and culturally diverse students increases. Students with multicultural backgrounds as well as Korea-born students returning from long residences in foreign countries have difficulties adjusting to Korean public schools due to a lack of Korean language proficiency and knowledge of Korean school culture. This study defines these students as Korean language learners (KLLs) and investigates both teacher and student perspectives on effective mathematics education for them. Cummins’ Quadrant model and the sheltered instruction observation protocol model, which were developed and used for English language learners (ELLs), are the frameworks used. The study explores various pedagogies for language learners and discusses the effectiveness and feasibility of ELL education models in a Korean school context based on the survey results of Korean elementary teachers and interviews of KLLs.  相似文献   

10.
Scaffolding is a complicated construct that can take many forms, including both written and verbal forms. This research study focused on three elementary science classrooms where students were using a series of written scaffolds to guide explanation building. In each classroom, data were collected to document and study an additional type of scaffold, verbal scaffolds that the teachers provided to complement the written scaffolds. Findings suggested that some types of verbal scaffolds, such as navigational guidance, were universal and therefore cut across all three grade levels. On balance, other verbal scaffolds were more common with younger students in association with their first explanation‐building science unit, such as a verbal scaffold that turned an open‐ended question into a few multiple‐choice options. Through the characterization of the types and range of verbal scaffolds that teachers say, both in general and in response to audience, we can gain insights to inform both curricular design and professional development toward supported explanation building across target audience, time, and topic.  相似文献   

11.
This study evaluated the effectiveness of teacher‐scientist partnerships for increasing the use. of inquiry in precollege classrooms. It assessed the influence of the Teaching About Energy Through Inquiry Institutes for middle and high school teachers and energy scientists on participants' attitudes about science and science education, use of inquiry instructional techniques, and student attitudes about their classroom environments. Participant surveys, institute and classroom observations, lesson plans, and interviews indicated increased appreciation for inquiry, greater confidence in teaching using inquiry, and greater use of inquiry in the classroom. Student surveys and classroom observations pointed to higher levels of student satisfaction and less friction among classmates during inquiry‐based investigations implemented after the institutes. Moreover, scientist partners reported increased familiarity with principles of science education and best teaching practice, which are essential skills and knowledge for disseminating results of scientific research to nonscientific audiences, as well as their own students. These results suggest that collaborations between teachers and research scientists can positively affect the environment for learning science in precollege and college classes. Successful collaborations are most likely to occur when equal status for teachers and scientists in the partnership is stressed and partners have the opportunity to explore inquiry‐based curricula together.  相似文献   

12.
Although there have been numerous scientists‐in‐the‐classroom initiatives in recent years, there is little research that documents whether or not these initiatives make an impact on students. This study examined 27 seventh‐grade and 27 tenth‐grade students' perceptions of scientists before and after a weeklong educational experience on nanotechnology, where students interacted with scientists. The data from this project included student interviews (pre and post intervention), field notes, student stories, and follow‐up interviews conducted 1 year after the project. Results showed that fewer than 10% of participants reported ever interacting with scientists in school settings prior to this project, despite attending schools in areas surrounded by a high density of scientists. Students' perceptions of scientists changed as a result of the project. The implications for science instruction are discussed.  相似文献   

13.
The purpose of this study was to examine the relationship between different types of professional development, teachers' instructional practices, and the achievement of students in science and mathematics. The types of professional development studied included immersion, examining practice, curriculum implementation, curriculum development, and collaborative work. Data regarding teachers' instructional practices and the amount of professional development were collected using teacher surveys. Ninety‐four middle school science teachers and 104 middle school mathematics teachers participated in the study. Student achievement was measured using eighth grade state science and mathematics achievement test data. Regression analyses suggested that for both science and mathematics teachers, examining practice and curriculum development were significantly related to the use of standards‐based instructional practices. Only curriculum development for mathematics teachers was significantly related to student achievement. Implications of results for the professional development of science and mathematics teachers are discussed.  相似文献   

14.
Much has been made in recent years of inquiry approaches to science education and the promise of such instruction to alleviate some of the ills of science education, yet in some ways this construct is still unclear to many in the field. In this paper we explore one view of inquiry in science that is based on the development, use, assessment, and revision of models and related explanations. Because modeling plays a central role in scientific inquiry it should be a prominent feature of students’ science education. We present a framework based on this view that can serve as a guide to curriculum development and instructional decision‐making with the goal of creating classroom environments that mirror important aspects of scientific practice. Specifically, the framework allows us to emphasize that scientists: engage in inquiry other than controlled experiments, use existing models in their inquiries, engage in inquiry that leads to revised models, use models to construct explanations, use models to unify their understanding, and engage in argumentation. Here, we discuss how these practices can be incorporated into science classrooms and illustrate that discussion with examples from our research classrooms.  相似文献   

15.
This study reports on a multiyear effort to create and evaluate cognitive‐based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in physics and advanced biology classes. These units made use of an instructional design based upon recent cognitive science research called the Legacy Cycle. Over a 3‐year period, comparison of student knowledge on written questions related to central concepts in physics and/or biology generally favored students who had worked with the experimental materials over students in control classrooms. In addition, experimental students were better able to solve applications type problems, as well as unit‐specific near transfer problems.  相似文献   

16.
Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This study examines the effects on eighth grade science teachers and their students in the context of a PD focused on the integration of information communication technologies and reformed science teaching practices. Findings from this investigation suggest that teachers who participated in PD for two years learned more about technology, improved their practice, and their students’ achievement was significantly higher compared to teachers who participated in one year of the PD or non‐participating peers. Science educators face multiple challenges as they attempt to deliver instruction in fundamentally different ways than what they experienced as learners. The delivery of this professional learning suggest that PD for science teachers should include educative learning experiences if understandings of reforms supported by research are to be realized.  相似文献   

17.
This study compared the impacts of traditional classroom and outdoor schoolyard instruction on the environmental science content knowledge and attitudes of 285 third‐ and fourth‐grade students. A modified Solomon Four Group design, including control, classroom treatment, and schoolyard treatment groups, was used. Both the indoor classroom and outdoor schoolyard treatments consisted of corresponding 10‐day units focusing on plant and animal ecology. Valid and reliable content knowledge and attitude assessments were administered before and after instruction. Analyses of variance and post hoc analyses of posttest scores and gain scores indicated that elementary students learned significantly more about selected environmental science topics through outdoor schoolyard experiences than through traditional indoor classroom experiences. Both classroom and schoolyard treatment groups developed more positive environmental attitudes as a result of instruction, but the attitude posttest and gain scores of these two groups were not significantly different from each other.  相似文献   

18.
Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the following research question: What pedagogical factors, and related teacher conceptions, are potentially related to the demonstration of creativity among science students? Seventeen middle‐level, high school, and introductory‐level college science teachers from a variety of school contexts participated in the study. A questionnaire developed for this study, interviews, and classroom observations were used in order to explore potential areas of relatedness between pedagogical factors and manifestations of student creativity in science. Five categories ultimately emerged and described potential areas in which teachers would have to explicitly plan for creativity. These areas could inform the pedagogical considerations that teachers would have to make within their lesson plans and activities in order to support its manifestation among students. These provide a starting point for science teachers and science teacher educators to consider how to develop supportive environments for student creative thinking.  相似文献   

19.
Science is a dynamic discipline, representative of the nature of science. Yet, young science students continue to think everything is already discovered. In this study, we examine why students are not actively doing science. From professional development to student engagement, how are classrooms and students changing as we increase teachers' content knowledge? Teaching practices modeled in professional development can change what occurs in the classroom. Our study was designed to probe differences in two different types of professional development programs both focused on content knowledge. We found that what is modeled by the professional developers has a profound effect on the direction of the classroom. This matched controlled study found that teachers reflect the teaching practice modeled by professional developers through their individual classroom teaching practices. A significant difference was found in cognitive activities and questioning skills between teachers in a professional development program modeling authentic inquiry versus the teachers in a professional development modeling simulated inquiry. While both groups increased the amount of overall inquiry used in the classroom, students whose teachers were in authentic inquiry professional development were engaged in higher cognitive activities and questioning skills. If students are engaged in dynamic classrooms, searching for answers to students' questions, perhaps they will understand that science is a dynamic discipline.  相似文献   

20.
Science as inquiry is a key content standard in the National Science Education Standards; however, few secondary science teachers successfully and consistently implement inquiry‐based instruction in their classrooms. This research examines the role of reform‐based curricular materials in influencing the classroom practices of 12 high school chemistry teachers and investigates the role of the teachers' knowledge and beliefs in their implementation of the reform‐based chemistry curriculum. Qualitative and quantitative data were collected in the form of beliefs interviews and classroom observations. The teachers' classroom practices were measured prior to and during the field test of the reform‐based chemistry curriculum. Analysis of the data revealed that teachers' classroom practice became more reform‐based in the presence of the new curriculum; however, the degree of change is related to the teachers' beliefs about teaching and learning, depth of chemistry knowledge, and years of teaching experience. Experienced, out‐of‐discipline teachers with transitional or student‐centered teaching beliefs demonstrated the most growth in reform‐based teaching practices. This study reinforces the need for reform‐based curriculum to assist teachers in implementing the intent of the National Science Education Standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号